首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2/C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2/C is formed by the aggregation of many small particles (20–40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2/C delivers superior rate performance (314.0 mA h g−1 at 20 A g−1), ultra-long cycle life (316.1 mA h g−1 at 10 A g−1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g−1 at 0.5 A g−1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2/C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.  相似文献   

2.
Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium-ion batteries. In the present study, integrated modification of migration channels broadening, charge density re-distribution, and oxygen vacancies regulation are realized in case of Nb-doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low-temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X-ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance.  相似文献   

3.
Sodium- and potassium-ion batteries have attracted intensive attention recently as low-cost alternatives to lithium-ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high-rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether-based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.  相似文献   

4.
The fast-charging capability of rechargeable batteries is greatly limited by the sluggish ion transport kinetics in anode materials. Here we develop an iodized polyacrylonitrile (I-PAN) anode that can boost the bulk/interphase lithium (Li)-ion diffusion kinetics and accelerate Li-ion desolvation process to realize high-performance fast-charging Li-ion batteries. The iodine immobilized in I-PAN framework expands ion transport channels, compresses the electric double layer, and changes the inner Helmholtz plane to form LiF/LiI-rich solid electrolyte interphase layer. The dissolved iodine ions in the electrolyte self-induced by the interfacial nucleophilic substitution of PF6 not only promote the Li-ion desolvation process, but also reuse the plated/dead Li formed on the anode under fast-charging conditions. Consequently, the I-PAN anode exhibits a high capacity of 228.5 mAh g−1 (39 % of capacity at 0.5 A g−1 delivered in 18 seconds) and negligible capacity decay for 10000 cycles at 20 A g−1. The I-PAN||LiNi0.8Co0.1Mn0.1O2 full cell shows excellent fast-charging performance with attractive capacities and negligible capacity decay for 1000 cycles at extremely high rates of 5 C and 10 C (1 C=180 mA g−1). We also demonstrate high-performance fast-charging sodium-ion batteries using I-PAN anodes.  相似文献   

5.
To overcome the drawbacks of the structural instability and poor conductivity of SnO2-based anode materials, a hollow core–shell-structured SnO2@C@Co-NC (NC=N-doped carbon) composite was designed and synthesized by employing the heteroatom-doping and multiconfinement strategies. This composite material showed a much-reduced resistance to charge transfer and excellent cycling performance compared to the bare SnO2 nanoparticles and SnO2@C composites. The doped heteroatoms and heterostructure boost the charge transfer, and the porous structure shortens the Li-ion diffusion pathway. Also, the volume expansion of SnO2 NPs is accommodated by the hollow space and restricted by the multishell heteroatom-doped carbon framework. As a result, this structured anode material delivered a high initial capacity of 1559.1 mA h g−1 at 50 mA g−1 and an initial charge capacity of 627.2 mA h g−1 at 500 mA g−1. Moreover, the discharge capacity could be maintained at 410.8 mA h g−1 after 500 cycles with an attenuation rate of only 0.069 % per cycle. This multiconfined SnO2@C@Co-NC structure with superior energy density and durable lifespan is highly promising for the next-generation lithium-ion batteries.  相似文献   

6.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth-abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon-based metal-free electrocatalyst. The battery shows a higher theoretical discharge potential (E=2.48 V) than that of Na–CO2 batteries (E=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g−1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1-type K2CO3 at the efficient carbon-based catalyst.  相似文献   

7.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

8.
As competitive next-generation rechargeable batteries, lithium-sulfur batteries (LSBs) suffer from the shuttle effect and the sluggish kinetics of intermediate polysulfides during charge and discharge processes, adversely affecting their electrochemical performances and actual applications. Herein, we demonstrate a polymer encapsulation strategy to synthesize atomic Fe and N co-doped hollow carbon nanospheres (Fe−NHC) with Fe−Nx sites for modifying commercial PP separator of LSBs to suppress the shuttle effect and promote the kinetics of intermediate polysulfides. Benefiting from the excellent structural design, the doped-N with positive charges could effectively adsorb negatively charged soluble polysulfides, help attract the soluble polysulfides to the Fe atoms and boost the catalytic transformation of the soluble polysulfides. Additionally, such a thin carbon shell could provide a short mass diffusion pathway and hence promote the adsorption and the catalytic conversion. Therefore, the battery with the Fe−NHC/PP separator delivers outstanding cycling and rate performances. At the large current density of 1 C, the specific capacity is 1079 mA h g−1 and maintains a low loss of 0.076 % per cycle within 500 cycles. Even at a harsh current density of 4 C, a high capacity of 824 mA h g−1 is still achieved, indicating the advantage of the Fe−NHC/PP separator in LSBs.  相似文献   

9.
Nanoporous ZnMn2O4 nanorods have been successfully synthesized by calcining β-MnO2/ZIF-8 precursors (ZIF-8 is a type of metal–organic framework). If measured as an anode material for lithium-ion batteries, the ZnMn2O4 nanorods exhibit an initial discharge capacity of 1792 mA h g−1 at 200 mA g−1, and an excellent reversible capacity of 1399.8 mA h g−1 after 150 cycles (78.1 % retention of the initial discharge capacity). Even at 1000 mA g−1, the reversible capacity is still as high as 998.7 mA h g−1 after 300 cycles. The remarkable lithium-storage performance is attributed to the one-dimensional nanoporous structure. The nanoporous architecture not only allows more lithium ions to be stored, which provides additional interfacial lithium-storage capacity, but also buffers the volume changes, to a certain degree, during the Li+ insertion/extraction process. The results demonstrate that nanoporous ZnMn2O4 nanorods with superior lithium-storage performance have the potential to be candidates for commercial anode materials in lithium-ion batteries.  相似文献   

10.
Transition metal oxides have vastly limited practical application as electrode materials for lithium-ion batteries (LIBs) due to their rapid capacity decay. Here, a versatile strategy to mitigate the volume expansion and low conductivity of Fe3O4 by coating a thin carbon layer on the surface of Fe3O4 nanosheets (NSs) was employed. Owing to the 2D core–shell structure, the Fe3O4@C NSs exhibit significantly improved rate performance and cycle capability compared with bare Fe3O4 NSs. After 200 cycles, the discharge capacity at 0.5 A g−1 was 963 mA h g−1 (93 % retained). Moreover, the reaction mechanism of lithium storage was studied in detail by ex situ XRD and HRTEM. When coupled with a commercial LiFePO4 cathode, the resulting full cell retains a capacity of 133 mA h g−1 after 100 cycles at 0.1 A g−1, which demonstrates its superior energy storage performance. This work provides guidance for constructing 2D metal oxide/carbon composites with high performance and low cost for the field of energy storage.  相似文献   

11.
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2, it not only reduces the formation of by-products (a high Li2O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2O2 and the decomposition of main by-products (Li2CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g−1 and 1000 mA g−1).  相似文献   

12.
The high theoretical energy density (1274 Wh kg−1) and high safety enable the all-solid-state Na−S batteries with great promise for stationary energy storage system. However, the uncontrollable solid–liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na−S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full Na2S4 to Na2S low-kinetic conversion during discharging. The electrodeposited Na2S on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S8 without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na−S pouch cells with an attractive specific capacity of 876 mAh gS−1 and a high energy of 608 Wh kgcathode−1 (172 Wh kg−1, based on the total mass of cathode and anode) at 60 °C are demonstrated.  相似文献   

13.
Biomimetic straw-like bundles of Co-doped Fe2O3 (SCF), with Co2+ incorporated into the lattice of α-Fe2O3, was fabricated through a cost-effective hydrothermal process and used as the anode material for lithium-ion batteries (LIBs). The SCF exhibited ultrahigh initial discharge specific capacity (1760.7 mA h−1 g−1 at 200 mA g−1) and cycling stability (with the capacity retention of 1268.3 mA h−1 g−1 after 350 cycles at 200 mA g−1). In addition, a superior rate capacity of 376.1 mA h−1 g−1 was obtained at a high current density of 4000 mA g−1. The remarkable electrochemical lithium storage of SCF is attributed to the Co-doping, which increases the unit cell volume and affects the whole structure. It makes the Li+ insertion–extraction process more flexible. Meanwhile, the distinctive straw-like bundle structure can accelerate Li ion diffusion and alleviate the huge volume expansion upon cycling.  相似文献   

14.
The rechargeable aluminium–sulfur (Al–S) battery is regarded as a potential alternative beyond lithium-ion battery system owing to its safety, promising energy density, and the high earth abundance of the constituent electrode materials, however, sluggish kinetic response and short life-span are the major issues that limit the battery development towards applications. In this article, we report CoII,III as an electrochemical catalyst in the sulfur cathode that renders a reduced discharge–charge voltage hysteresis and improved capacity retention and rate capability for Al–S batteries. The structural and electrochemical analysis suggest that the catalytic effect of CoII,III is closely associated with the formation of cobalt sulfides and the changes in the valence states of the CoII,III during the electrochemical reactions of the sulfur species, which lead to improved reaction kinetics and sulfur utilization in the cathode. The Al–S battery, assembled with the cathode consisting of CoII,III decorated carbon matrix, demonstrates a considerably reduced voltage hysteresis of 0.8 V, a reversible specific capacity of ≈500 mAh g−1 at 1 A g−1 after 200 discharge–charge cycles and of ≈300 mAh g−1 at 3 A g−1.  相似文献   

15.
Two-dimensional molybdenum disulfide (MoS2) has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, but its rapid capacity decay owing to poor conductivity, structure pulverization, and polysulfide dissolution presents significant challenges in practical applications. Herein, triple-layered hollow spheres in which MoS2 nanosheets are fully encapsulated between inner carbon and outer nitrogen-doped carbon (NC) were fabricated. Such an architecture provides high conductivity and efficient lithium-ion transfer. Moreover, the NC shell prevents aggregation and exfoliation of MoS2 nanosheets and thus maintains the integrity of the nanostructure during the charge/discharge process. As anode materials for LIBs, the C@MoS2@NC hollow spheres deliver a high reversible capacity (747 mA h g−1 after 100 cycles at 100 mA g−1) and excellent long-cycle performance (650 mA h g−1 after 1000 cycles at 1.0 A g−1), which confirm its potential for high-performance LIBs.  相似文献   

16.
Elaborately designed multifunctional electrocatalysts capable of promoting Li+ and CO2 transport are essential for upgrading the cycling stability and rate capability of Li-CO2 batteries. Hydrogen-bonded organic frameworks (HOFs) with open channels and easily functionalized surfaces hold great potential for applications in efficient cathodes of Li-CO2 batteries. Herein, a robust HOFS (HOF-FJU-1) is introduced for the first time as a co-catalyst in the cathode material of Li-CO2 batteries. HOF-FJU-1 with cyano groups located periodically in the pore can induce homogeneous deposition of discharge products and accommodate volumetric expansion of discharge products during cycling. Besides, HOF-FJU-1 enables effective interaction between Ru0 nanoparticles and cyano groups, thus forming efficient and uniform catalytic sites for CRR/CER. Moreover, HOF-FJU-1 with regularly arranged open channels are beneficial for CO2 and Li+ transport, enabling rapid redox kinetic conversion of CO2. Therefore, the HOF-based Li-CO2 batteries are capable of stable operation at 400 mA g−1 for 1800 h and maintain a low overpotential of 1.96 V even at high current densities up to 5 A g−1. This work provides valuable guidance for developing multifunctional HOF-based catalysts to upgrade the longevity and rate capability of Li-CO2 batteries.  相似文献   

17.
Lithium-sulfur batteries are promising secondary energy storage devices that are mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe2 nanoparticles (CoSe2-PNC) is developed as a cathode for lithium-sulfur battery. A combination of CoSe2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g−1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g−1 thus corresponding to a capacity retention of 75.97 %. In a long-term cycling test, discharge specific capacity of 546.7 mAh g−1 was observed after 300 cycles performed at a current density of 1 C.  相似文献   

18.
Nanostructured silicon-based materials with porous structures have recently been found to be impressive anode materials with high capacity and cycling performance for lithium-ion batteries. However, the current methods of preparing porous silicon have generally been confronted with the requirement for multiple steps and complex synthesis. In the present study, porous silicon with high surface area was prepared by using a high yielding and simple reaction in which commercial magnesium powder readily reacts with HSiCl3 with the help of an amine catalyst under mild conditions. The obtained porous silicon was coated with a nitrogen-doped carbon layer and used as the anode for lithium-ion batteries. The porous Si-carbon nanocomposites exhibited excellent cycling performance with a retained discharge capacity of 1300 mA h g−1 after 200 cycles at 1 A g−1 and a discharge capacity of 750 mA h g−1 at a current density of 2 A g−1 after 250 cycles. Remarkably, the Coulombic efficiency was maintained at nearly 100 % throughout the measurements.  相似文献   

19.
The storage time of Zn-air batteries (ZABs) for practical implementation have been neglected long-lastingly. ZABs based on organic solvents promise long shelf lives but suffer from sluggish kinetics. Here, we report a longly storable ZAB with accelerated kinetics mediated by I3/I redox. In the charge process, the electrooxidation of Zn5(OH)8Cl2⋅H2O is accelerated by I3 chemical oxidation. In the discharge process, I adsorbed on the electrocatalyst changes the energy level of oxygen reduction reaction (ORR). Benefitting from these advantages, the prepared ZAB shows remarkably improved round-trip efficiency (56.03 % vs. 30.97 % without the mediator), and long-term cycling time (>2600 h) in ambient air without replacing any components or applying any protective treatment to Zn anode and electrocatalyst. After resting for 30 days without any protection, it can still directly discharge continuously for 32.5 h and charge/discharge very stably for 2200 h (440 cycles), which is evidently superior to aqueous ZABs (only 0/0.25 h, and 50/25 h (10/5 cycles) by mild/alkaline electrolyte replenishment). This study provides a strategy to solve both storage and sluggish kinetics issues that have been plaguing ZABs for centuries, opening up a new avenue to the industrial application of ZABs.  相似文献   

20.
Lithium–sulfur (Li-S) batteries have become one of the most promising candidates as next-generation batteries, owing to their high specific capacity, low cost, and environmental benignity. Although many strategies have been proposed to restrain the shuttle of lithium polysulfides (LiPSs) through physical trapping and chemical binding, the sluggish kinetics of PS conversion still degrade the capacity, rate, and cycling performance of Li-S batteries. Herein, a novel kind of few-layer BN with engineered nitrogen vacancies (v-BN) has been developed as a cathode matrix for Li-S batteries. The positive vacancies in the BN nanosheets not only promote the immobilization and conversion of LiPSs, but also accelerate the lithium ion diffusion in cathode electrodes. Compared with pristine BN, the v-BN cathodes exhibit higher initial capacities from 775 mA h g−1 to 1262 mA h g−1 at 0.1 C and a high average coulombic efficiency of over 98 % during 150 cycles. Upon increasing the current density to 1 C, the cell still preserves a capacity of 406 mA h g−1 after 500 cycles, exhibiting a capacity decay of only 0.084 % per cycle. The new vacancy-engineered material provides a promising method for achieving excellent performance in Li-S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号