首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe–Ni alloys below the Invar region with compositions Fe100−xNix (x=21, 24, and 27 at%) were prepared by high-energy ball milling technique (mechanical alloying). The as-milled samples, characterized by X-ray diffraction and Mössbauer spectroscopy, contain a mixture of (BCC) and γ (FCC) phases, whereas the samples annealed at 650°C for 0.5 h show a single γ (FCC) phase displaying a single line Mössbauer spectrum at room temperature (RT). At low temperature, the Mössbauer spectra of annealed Fe76Ni24 and Fe73Ni27 alloys show the existence of a magnetically split pattern together with a broad singlet, which are ascribed to a high-moment ferromagnetic Ni-rich phase and a low-moment Fe-rich phase, respectively. The Fe-rich phase in annealed Fe76Ni24 alloy, which is paramagnetic at RT, undergoes antiferromagnetic ordering at 40 K, estimated from the dramatic line broadening of its spectrum, giving rise to a small hyperfine field (e.g. 2 T at 6 K). The coexistence of these phases is attributed to phase segregation occurring in these alloys as a result of enhanced atomic diffusion. The stability of these alloys towards martensitic (FCC→BCC) transformation at low temperatures is discussed in connection with the Fe–Ni phase diagram below 400°C.  相似文献   

2.
We present the results of picosecond laser annealing of as-quenched Fe85B15 and Fe82B18 metallic glasses. The influence of the laser radiation on the surface and bulk properties are studied using CrK X-ray diffraction and transmission Mössbauer spectroscopy. The X-ray data show that the amorphous nature of the surface of the samples can be improved with laser treatment. The mat (cooling) surfaces of the ribbons appear to be more affected by the laser treatment, and show a higher stability. The Mössbauer data reveal that laser annealing of ribbon surfaces also affects the bulk properties of these materials due to induced stresses from the surface layer. The magnetic properties of these materials can be modified by laser annealing.  相似文献   

3.
The magnetic properties of nanocomposite melt-spun magnets with composition Sm16−xCo68+xB16 (x=0–10, 2 at% interval) and Sm8Co92−yBy (y=10–18, 2 at% interval) have been studied systematically. Several ribbons were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 700–800°C for 2.5–40 min. XRD results and magnetization versus temperature curves showed that almost all of the samples were composed of the tetragonal Sm2Co14B and rhombohedral SmCo12B6 phases which are not magnetically hard at room temperature. However, a relatively high coercivity in the range of 3.5–5.5 kOe has been obtained in these samples. The highest coercivity of 5.5 kOe and a very promising β value of −0.28%/°C were obtained in Sm8Co74B18 ribbons annealed at 750°C for 5 min. The high coercivities are attributed to the small grain size of the 2 : 14 : 1 phase, in which the large surface areas enhance its effective anisotropy, and make it uniaxial type.  相似文献   

4.
In the present work, a quantitative analysis of the phase compositions by Mössbauer effect spectroscopy of solid and conventional hydrogen disproportionated Pr13.7Fe80.3B6.0 and Pr13.7Fe63.5Co16.7Zr0.1B6.0 alloys was carried out. Significant amounts of intermediate borides t-Fe3B and Pr(Fe, Co)12B6 were detected after solid hydrogen disproportionation treatment in Pr13.7Fe80.3B6.0 and Pr13.7Fe63.5Co16.7Zr0.1B6.0 alloys, respectively. After conventional hydrogenation–disproportionation–desorption–recombination treatment these phases were not detected and in no case residual Pr2Fe14B-phase was found. It was observed that the amount of intermediate borides after disproportionation can be correlated with the degree of texture after recombination at various temperatures.  相似文献   

5.
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)–Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd,Pr)-rich composition. Rapidly solidified (Pr,Nd)–Fe–B alloys were prepared by melt-spinning. The compositions studied were (Pr1−xNdx)4Fe78B18 (x=0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (PrxNd1−x)9.5Fe84.5B6 materials that present excellent values for coercive field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mössbauer spectroscopy revealed that samples are predominantly composed of Fe3B and -Fe. For the RE-rich compositions (PrxNd1−x)9.5Fe84.5B6 (x=0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr9.5Fe84.5B6.  相似文献   

6.
The effects of Cu doping in MgB2 superconductor has been studied at different processing temperatures. The polycrystalline samples of Mg1−xCuxB2 with x = 0.05 were synthesized through the in-situ solid sate reaction method in argon atmosphere at different temperature range between 800–900 °C. The samples were characterized through X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and low temperature RT measurement techniques for the phase verification, microstructure and superconducting transition temperature, respectively. The XRD patterns of Mg1−xCuxB2 (x = 0.05) do not exhibit any impurity traces of MgB4 or MgB6 and they show the sharp transition in the samples prepared at 850 °C. The onset transition temperature of the prepared samples is around 39 K, which is almost the same as that for the pure MgB2. This indicates that Cu doping in MgB2 does not affect the transition temperature. The SEM micrograph of Mg0.95Cu0.05B2 has shown that the sample is dense with grain size smaller than 1 μm.  相似文献   

7.
The effects of annealing on structure and laser-induced damage threshold (LIDT) of Ta2O5/SiO2 dielectric mirrors were investigated. Ta2O5/SiO2 multilayer was prepared by ion beam sputtering (IBS), then annealed in air under the temperature from 100 to 400 °C. Microstructure of the samples was characterized by X-ray diffraction (XRD). Absorption of the multilayer was measured by surface thermal lensing (STL) technique. The laser-induced damage threshold was assessed using 1064 nm free pulsed laser at a pulse length of 220 μs.

It was found that the center wavelength shifted to long wavelength gradually as the annealing temperature increased, and kept its non-crystalline structure even after annealing. The absorbance of the reflectors decreased after annealing. A remarkable increase of the laser-induced damage threshold was found when the annealing temperature was above 250 °C.  相似文献   


8.
Two samples of non-stoichiometric La2CuO4 were synthesized, one with La/Cu<2, and the other with 10% Sn substituting Cu. They were investigated by X-ray diffraction, Mössbauer spectroscopy, and microwave-absorption techniques. The microwave-absorption data indicated that they were both superconducting, with the transition temperatures Tc of 40.5 and 41.5 K, the one doped with Sn possessing the higher Tc. The Mössbauer spectra revealed that there exist two kinds of Sn(IV) atoms disordered with Cu. Their isomer shift, δ=−0.244(4) mm/s, is in agreement with Sn(IV) coordinated by oxygen. One site was characterized by a single Mössbauer line, being associated with a weakly distorted environment, wherein the Sn, coordinated more symmetrically, is surrounded by four Cu2+ ions. On the other hand, the other site, characterized by a Mössbauer doublet exhibited a quadrupole splitting Δ=1.07(2) mm/s, being associated with a highly distorted coordination, explained to be due to Sn occupying two adjacent cationic sites. To our knowledge, such a substitution for copper ions not resulting in a decrease of Tc has not been reported previously.  相似文献   

9.
The roughening of interfaces as a function of layer thickness and magneto transport properties have been investigated on sputter-deposited Fe/Ni75B25 multilayer films. X-ray reflectivity data were recorded for Ni75B25(72 nm) film and for [Fe(2 nm)/Ni75B25(2 nm)]16 and [Fe(4 nm)/Ni75B25(4 nm)]8 multilayer films. A power law dependence of the interfacial width of growing Fe/Ni75B25 interfaces was observed. The resulting growth exponents β were found to be in the range of 0.55–0.58 in the initial growth stage of the multilayer with lower Fe/Ni75B25 repetition thickness and at approximately 0.34 for multilayer with higher repetition thickness. The growth exponents were compared with theoretical calculations. High resolution electron microscopy revealed the columnar growth of the Fe/Ni75B25 multilayer. Additionally, an increase of magnetoresistance was observed by the multilayering of Ni75B25 films with Fe interlayers.  相似文献   

10.
徐祖雄  马如璋 《物理学报》1988,37(11):1843-1848
用穆斯堡尔谱和X射线衍射方法,研究了急冷非晶态合金薄带Fe81B13.5Si3.5C2在空气中退火时磁各向异性的变化,及其与表面结晶和整体结晶的相关性。实验表明,在空气中退火时,磁各向异性的反常变化亦与表面结晶向体结晶的发展密切相关。 关键词:  相似文献   

11.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

12.
Mössbauer studies on 57Fe-doped superconducting REBa2Cu3O7+δ (RE=Er, Dy) were made as a function of temperature for x=0.15 and 0.30. The magnetic behavior of the 3d dopants, which mainly occupy Cu(1) sites, undergoes antiferromagnetic ordering which is coexistent with superconductivity at low temperature. The dimensionality of the magnetic interaction changes from 2D to 3D when the rare earth changes from Er to Dy. the line-widths of the Mössbauer subspectra are characteristic of magnetic fluctuation behavior in the vicinity of a phase transition. Combining these results with those of Fe-doped Y-123 (pseudo 1D) and Gd (3D), the magnitude of the rare earth moments appears to be strongly correlated with the dimensionality of the magnetic interaction of Fe dopants in these compounds. However, the Mössbauer spectrum for 155Gd in GdBa2Cu2.85Fe0.15O7+δ (TN(Fe) 14 K) shows no magnetic order at 4.9 K.  相似文献   

13.
We have investigated the crystallographic and magnetic properties of the ternary carbides Tm2Fe17Cx by means of X-ray diffraction, 57Fe Mössbauer spectroscopy, 169Tm Mössbauer spectroscopy and magnetic measurements. It is shown that small amounts of carbon raise the Curie temperature in Tm2Fe17Cx from below room temperature to about 500 K, at the same time increasing the average Fe moment. Important conclusions regarding the rare-earth sublattice anisotropy were derived from the quadrupole splitting of the 169Tm Mössbauer spectra and from the strong concentration dependence of the spin reorientation temperature in Tm2Fe17Cx.  相似文献   

14.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

15.
Ohmic contacts to p-type CuCrO2 using Ni/Au/CrB2/Ti/Au contact metallurgy are reported. The samples were annealed in the 200–700 °C range for 60 s in flowing oxygen ambient. A minimum specific contact resistance of 2 × 10−5 Ω cm2 was obtained after annealing at 400 °C. Further increase in the annealing temperature (>400 °C) resulted in the degradation of contact resistance. Auger Electron Spectroscopy (AES) depth profiling showed that out-diffusion of Ti to the surface of the contact stacks was evident by 400 °C, followed by Cr at higher temperature. The CrB2 diffusion barrier decreases the specific contact resistance by almost two orders of magnitude relative to Ni/Au alone.  相似文献   

16.
Mössbauer spectroscopy in longitudinal external fields (up to 7 T) and SQUID magnetometry (up to 5 T) measurements have been carried out on mechanically alloyed (MA) γ (FCC) Fe100−xNix (x=21, 24, and 27 at%) alloys at room temperature. The zero-field Mössbauer spectra of these alloys show only singlets. The high field Mössbauer results indicate that large amounts of the material is in the paramagnetic state, giving rise to two spectral components with their effective fields almost linearly depend on the external field, but with slopes that are smaller than unity. The in-field Mössbauer spectra of the x=27 at% alloy show an additional component with a hyperfine field of ≈21 T, which is attributed to Ni-rich (>30 at% Ni) clusters (domains) of ferromagnetically ordered HM phase that behaves superparamagnetically at room temperature and shows a non-linear character in the magnetization (M–H) curves at low fields. This HM phase is also present in the x=21 and 24 at% samples but with smaller amounts. The results suggest induced hyperfine fields and hence induced moments in the paramagnetic components, which increases with increasing Ni contents. Taenite-enriched samples from the metal particles of two stony meteorites, Al Kidirate (H6) and New Halfa (L4), are also studied by high field Mössbauer spectroscopy and the results are compared to that of MA samples.  相似文献   

17.
The influence of the annealing time on the corrosion resistance of a Pr–Fe–Co–B–Nb alloy with the addition of 0.1 wt% P was investigated here using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The cast ingot alloys were annealed at 1100 °C for 10, 15 and 20 h. The specimens were immersed for 30 days in naturally aerated 0.02 M Na2HPO4 solution at room temperature, during which period the evolution of the electrochemical behavior was assessed using EIS. The results indicated that the corrosion resistance of the Pr14FebalCo16B6Nb0.1P0.25 alloy was related to the annealing time and, hence, to its microstructure. Annealing at 1100 °C for 10 h was insufficient to eliminate the Fe- phase from the alloy microstructure, whereas annealing for 15 and 20 h removed an increasing amount of Fe- phase, thereby increasing the alloy's corrosion resistance.  相似文献   

18.
Nanocrystalline Sm0.5Y0.5Co5 powders with high coercivity HC and enhanced remanence Mr were prepared by mechanical milling and subsequent annealing. Annealing temperatures T ranging from 973 to 1173 K, and times t ranging from 1 to 5 min were used. X-ray diffraction (XRD) and DC-magnetization measurements were carried out to study the microstructure and magnetic properties of these samples. XRD patterns demonstrate that the average grain size D of the nanocrystalline powders depends on the annealing temperature T and time t: D ranges from 11 nm (for T=973 K and t=1 min) to 93 nm (for T=1173 K and t=5 min). Magnetic measurements performed at room temperature indicate high coercivity values (HC>955 kA/m), and enhanced remanence (Mr/Mmax>0.5) for all samples. A strong annealing-induced grain size dependence of these magnetic properties was found.  相似文献   

19.
It was observed that the nanocrystallites of BaFe12O19 formed at 140°C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (Tc), a direct measuring of the strength of superexchange interaction of Fe3+–O2−–Fe3+, increased from 410°C for the nanoparticles prepared without an external field applied to 452°C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Mössbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles.  相似文献   

20.
Millimetre-size UFe5Sn single crystals were grown by the top seed solution growth method and characterized by magnetization, 57Fe Mössbauer spectroscopy and specific heat measurements in order to study the magnetic transitions detected in powder samples at 248 and 178 K. The magnetization measurements show different behaviour along the three crystallographic directions but with similar values of spontaneous magnetization along a and c. The transition at 248 K is associated with ferromagnetic ordering of iron moments along the c-axis, while the transition at lower temperature is associated with a reorientation towards b. Mössbauer data show that this reorientation is concomitant to the ordering of the Fe2 sites, which in a large proportion remain paramagnetic between the two transition temperatures. Specific heat measurements are consistent with the establishment of magnetic ordering at 248 K, followed by a spin reorientation at 178 K, yielding γ(0 K)140 mJ/(mol K2) and θ290 K for UFe5Sn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号