首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10−8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.  相似文献   

2.
This paper reports a droplet-based microfluidic device composed of patterned co-planar electrodes in an all-in-a-single-plate arrangement and coated with dielectric layers for electrowetting-on-dielectric (EWOD) actuation of discrete droplets. The co-planar arrangement is preferred over conventional two-plate electrowetting devices because it provides simpler manufacturing process, reduced viscous drag, and easier liquid-handling procedures. These advantages lead to more versatile and efficient microfluidic devices capable of generating higher droplet speed and can incorporate various other droplet manipulation functions into the system for biological, sensing, and other microfluidic applications. We have designed, fabricated, and tested the devices using an insulating layer with materials having relatively high dielectric constant (SiO(2)) and compared the results with polymer coatings (Cytop) with low dielectric constant. Results show that the device with high dielectric layer generates more reproducible droplet transfer over a longer distance with a 25% reduction in the actuation voltage with respect to the polymer coatings, leading to more energy efficient microfluidic applications. We can generate droplet speeds as high as 26 cm/s using materials with high dielectric constant such as SiO(2).  相似文献   

3.
In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300 V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption.  相似文献   

4.
We describe a new device concept for digital microfluidics, based on an active matrix electrowetting on dielectric (AM-EWOD) device. A conventional EWOD device is limited by the number of electrical connections that can be made practically, which restricts the number and type of droplet operations. In an AM-EWOD, the patterned electrodes of a conventional EWOD device are replaced by a thin film transistor (TFT) array, as found in a liquid crystal display (LCD), facilitating independent control of each electrode. The arrays can have many thousand individually addressable electrodes, are fully reconfigurable and can be programmed to support multiple simultaneous operations. Each element is 210 μm × 210 μm in size and contains a circuit that measures the electrical impedance of the liquid above it. This is used to determine the presence and size of a droplet, a method that can improve assay reliability and accuracy. This sensor provides feedback, error detection and closed loop control of an assay sequence. We describe the design, fabrication and testing of a 64 × 64 format AM-EWOD device with impedance sensor functionality. A colorimetric assay is implemented on the device and used to measure glucose in human blood serum. Results are compared with the same assay performed on a microtitre plate.  相似文献   

5.
《Analytical letters》2012,45(2-3):187-201
This paper reviews the functions of dielectrophoresis (DEP) that have been applied to biosensor and biochip platforms for bacteria detection, including concentration of bacterial cells from continuous flows, separation of target bacterial cells from non-target cells, as well as the enhancement of antibody capture efficiency on biosensor and biochip surfaces. DEP could provide effective concentration and separation simultaneously in well-designed microfluidic biosensor and biochip systems. The integration of DEP with a detection system allows the integration of sample preparation and enrichment steps with detection, which has the potential to eliminate the traditionally used time-consuming culture-based enrichment steps and other multiple off-chip sample preparation steps. DEP is also useful in biosensor and biochips platforms for enhancing antibody capture efficiency in both flow-through and non-flow-through microdevices. The enhanced antibody capture efficiency could allow the sensor capture more cells and to be detected by the sensor, particularly in dealing with low number of cells. The integration of multifunctions of DEP into biosensor and biochip platform has the potential to improve the detection of bacterial cells.  相似文献   

6.
A study of EWOD-driven droplets by PIV investigation   总被引:1,自引:0,他引:1  
Despite the recent interest in droplet-based microfluidics using electrowetting-on-dielectric (EWOD), fundamental understanding of the fluid dynamics remains limited to two-dimensional (2D) reduction of the Navier-Stokes equation. Experimental data are in dire need to verify the predictions and advance the field. We report an investigation of the flow inside droplets actuated by EWOD in air using micro particle image velocimetry (micro-PIV). Using the continuity equation, we reconstruct the 3D velocity field from the 2D PIV experimental data. We present some fundamental findings and build valuable insights that will help design sophisticated EWOD microfluidic devices. For example, the results confirm that efficient mixing in a droplet may be achieved by moving the droplet along an irreversible pattern that breaks the symmetry of the two circulating inner flows.  相似文献   

7.
We present for the first time an electrowetting on dielectric (EWOD) microfluidic system coupled to a surface-assisted laser desorption-ionization (SALDI) silicon nanowire-based interface for mass spectrometry (MS) analysis of small biomolecules. Here, the transfer of analytes has been achieved on specific locations on the SALDI interface followed by their subsequent mass spectrometry analysis without the use of an organic matrix. To achieve this purpose, a device comprising a digital microfluidic system and a patterned superhydrophobic/superhydrophilic silicon nanowire interface was developed. The digital microfluidic system serves for the displacement of the droplets containing analytes, via an electrowetting actuation, inside the superhydrophilic patterns. The nanostructured silicon interface acts as an inorganic target for matrix-free laser desorption-ionization mass spectrometry analysis of the dried analytes. The proposed device can be easily used to realize several basic operations of a Lab-on-Chip such as analyte displacement and rinsing prior to MS analysis. We have demonstrated that the analysis of low molecular weight compounds (700 m/z) can be achieved with a very high sensitivity (down to 10 fmol μL(-1)).  相似文献   

8.
Cho SK  Zhao Y  Kim CJ 《Lab on a chip》2007,7(4):490-498
This paper describes a concept of concentration and binary separation of particles and its experimental confirmations for digital microfluidics where droplets are driven by the mechanism of electrowetting-on-dielectric (EWOD). As a fundamental separation unit, a binary separation scheme is developed, separating two different types of particles in one droplet into two droplets, one type each. The separation scheme consists of three distinctive steps, each with their own challenges: (1) isolate two different types of particles by electrophoresis into two regions inside a mother droplet, (2) physically split the mother droplet into two daughter droplets by EWOD actuation so that each type of particle is concentrated in each daughter droplet, and (3) free the daughter droplets from the separation site by EWOD to ready them for follow-up microfluidic operations. By applying a similar procedure to a droplet containing only one type of particle, two daughter droplets of different particle concentrations can be created. Using negatively charged carboxylate modified latex (CML) particles, 83% of the total particles are concentrated in a daughter droplet. Successful binary separation is also demonstrated using negatively charged CML particles and no-charge-treated polystyrene particles. Despite the undesired vortex developed inside the mother droplet, about 70% of the total CML particles are concentrated in one daughter droplet while about 70% of the total polystyrene particles are concentrated in the other daughter droplet.  相似文献   

9.
Biosensor response time, which depends sensitively on the transport of biomolecules to the sensor surface, is a critical concern for future biosensor applications. We have fabricated carbon nanotube field-effect transistor biosensors and quantified protein binding rates onto these nanoelectronic sensors. Using this experimental platform we test the effectiveness of a protein repellent coating designed to enhance protein flux to the all-electronic real-time biosensor. We observe a 2.5-fold increase in the initial protein flux to the sensor when upstream binding sites are blocked. Mass transport modelling is used to calculate the maximal flux enhancement that is possible with this strategy. Our results demonstrate a new methodology for characterizing nanoelectronic biosensor performance, and demonstrate a mass transport optimization strategy that is applicable to a wide range of microfluidic based biosensors.  相似文献   

10.
Fan SK  Yang H  Hsu W 《Lab on a chip》2011,11(2):343-347
We present a long (204 mm), curved (curvature of 0.04 mm(-1)), and closed droplet pathway in "droplet-on-a-wristband" (DOW) with the designed digital microfluidic modular interfaces for electric signal and droplet connections based on the study of electrowetting-on-dielectric (EWOD) in inclined and curved devices. Instead of using sealed and leakage-proof pipes to transmit liquid and pumping pressure, the demonstrated modular interface for electrowetting-driven digital microfluidics provides simply electric and fluidic connections between two adjacent parallel-plate modules which are easy-to-attach/detach, showing the advantages of using droplets for microfluidic connections between modules. With the previously reported digital-to-channel interfaces (Abdelgawad et al., Lab Chip, 2009, 9, 1046-1051), the chip-to-chip interface presented here would be further applied to continuous microfluidics. Droplet pumping across a single top plate gap and through a modular interface with two gaps between overlapping plates are investigated. To ensure the droplet transportation in the DOW, we actuate droplets against gravity in an inclined or curved device fabricated on flexible PET substrates prepared by a special razor blade cutter and low temperature processes. Pumping a 2.5 μl droplet at a speed above 105 mm s(-1) is achieved by sequentially switching the entire 136 driving electrodes (1.5 mm × 1.5 mm) along the four flexible modules of the DOW fabricated by 4-inch wafer facilities.  相似文献   

11.
Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip systems, especially in a point-of-care setting. Conventional microfluidic devices are usually based on continuous-flow in microchannels, and offer little flexibility in terms of reconfigurability and scalability. Handling of real physiological samples has also been a major challenge in these devices. We present an alternative paradigm--a fully integrated and reconfigurable droplet-based "digital" microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. The microdroplets, which act as solution-phase reaction chambers, are manipulated using the electrowetting effect. Reliable and repeatable high-speed transport of microdroplets of human whole blood, serum, plasma, urine, saliva, sweat and tear, is demonstrated to establish the basic compatibility of these physiological fluids with the electrowetting platform. We further performed a colorimetric enzymatic glucose assay on serum, plasma, urine, and saliva, to show the feasibility of performing bioassays on real samples in our system. The concentrations obtained compare well with those obtained using a reference method, except for urine, where there is a significant difference due to interference by uric acid. A lab-on-a-chip architecture, integrating previously developed digital microfluidic components, is proposed for integrated and automated analysis of multiple analytes on a monolithic device. The lab-on-a-chip integrates sample injection, on-chip reservoirs, droplet formation structures, fluidic pathways, mixing areas and optical detection sites, on the same substrate. The pipelined operation of two glucose assays is shown on a prototype digital microfluidic lab-on-chip, as a proof-of-concept.  相似文献   

12.
《Electroanalysis》2018,30(3):453-458
Glomalin is a soil protein abundantly occurring in the soil. In the current time, knowledge about glomalin is limited and there are also missing simple test for the determination of glomalin in the environment. This work is devoted to construction of a biosensor which is expected to be a simple device for the determination of glomalin in extracts from soil samples. The biosensor was constructed using an antibody against glomalin and piezoelectric quartz crystal microbalance (QCM) sensor platform allowing label free assay. Electrodes of QCM were activated using cysteamine and glutaraldehyde and finally, an antibody against glomalin was immobilized. Glomalin was acquired from various soil samples by extraction in an autoclave and its content was determined by a standard spectrophotometric test. Time necessary to bind sufficient amount of glomalin was discovered for the biosensor and four hours incubation interval corresponded with maximal efficacy. Limit of detection for the biosensor based assay was found to be equal to 3.40 μg/g which is enough to cover all the tested soil samples containing glomalin in a concentration from 291 μg/g to 3.47 mg/g. The assay also fully correlated with the standard tests. In a conclusion, the piezoelectric biosensor seems to be a suitable platform for the determination of glomalin in samples of environment origin. The method represents an improvement of the current analytical platforms that are based on measurement of total protein content in soil extract.  相似文献   

13.
Droplet-based microfluidics is a modular platform in high-throughput single-cell and small sample analyses. However, this droplet microfluidic system was widely fabricated using soft lithography or glass capillaries, which is expensive and technically demanding for various applications, limiting use in resource-poor settings. Besides, the variation in droplet size is also restricted due to the limitations on the operating forces that the paper-based platform is able to withstand. Herein, we develop a fully integrated paper-based droplet microfluidic platform for conducting droplet generation and cell encapsulation in independent aqueous droplets dispersed in a carrier oil by incorporating electric fields. Through imposing an electric field, the droplet size would decrease with increasing the electric field and smaller droplets can be produced at high applied voltage. The droplet diameter can be adjusted by the ratio of inner and outer flow velocities as well as the applied electric field. We also demonstrated the proof of concept encapsulation application of our paper device by encapsulating yeast cells under an electric field. Using a simple wax printing method, carbon electrodes can be integrated on the paper. The integrated paper-based microfluidic platform can be fabricated easily and conducted outside of centralized laboratories. This microfluidic system shows great potential in drug and cell investigations by encapsulating cells in resource-limited environments.  相似文献   

14.
This report is about microfluidic extraction systems based on droplets of aqueous two-phase system. Mass transfer between continuous phase and dispersed droplet is demonstrated by microextraction of ruthenium red in a microfluidic device. Droplets are generated with electrohydrodynamic method in the same device. By comparing brightness in the digital image of a solution with known concentrations of ruthenium red and those of a droplet in the microextraction, ruthenium red concentration was measured along the microextraction channel, resulting in good agreement with a simple diffusion model. The maximum partition coefficient was 9.58 in the experiment with the 70-mm-long-channel microextractor. The method is usable for terminating microextraction by electrohydrodynamic manipulation of droplet movement direction. Droplets of different ruthenium red concentration, 0.12 and 0.24% (w/w) in this experiment, can be moved to desired place of microfluidic system for further reaction through respectively branched outlets. In this study droplet-based microextraction is demonstrated and the mass transport is numerically analyzed by solving the diffusion–dissolution model.  相似文献   

15.
Nelson CW  Lynch CM  Crane NB 《Lab on a chip》2011,11(13):2149-2152
We describe a novel method for droplet transport combining electrowetting on dielectric (EWOD) and the diode-like behavior of valve metals to achieve unique actuation performance. While traditional EWOD droplet transport requires switching of voltage between multiple electrodes, our method, which we term continuous rectified electrowetting, utilizes a simple single electrode and a DC voltage to move a 50 μl droplet 28 mm with velocities up to 32 mm s(-1).  相似文献   

16.
Inappropriate antibiotic use is a major factor contributing to the emergence and spread of antimicrobial resistance. The long turnaround time (over 24 hours) required for clinical antimicrobial susceptibility testing (AST) often results in patients being prescribed empiric therapies, which may be inadequate, inappropriate, or overly broad-spectrum. A reduction in the AST time may enable more appropriate therapies to be prescribed earlier. Here we report on a new diagnostic asynchronous magnetic bead rotation (AMBR) biosensor droplet microfluidic platform that enables single cell and small cell population growth measurements for applications aimed at rapid AST. We demonstrate the ability to rapidly measure bacterial growth, susceptibility, and the minimum inhibitory concentration (MIC) of a small uropathogenic Escherichia coli population that was confined in microfluidic droplets and exposed to concentrations above and below the MIC of gentamicin. Growth was observed below the MIC, and no growth was observed above the MIC. A 52% change in the sensor signal (i.e. rotational period) was observed within 15 minutes, thus allowing AST measurements to be performed potentially within minutes.  相似文献   

17.
We report a glass/PDMS-based microfluidic biosensor that integrates contactless conductivity transduction and folic acid, a target for tumor biomarker, as a bioreceptor. The device presents relevant advantages such as direct determination--dismiss the use of redox mediators as in faradaic electrochemical techniques--and the absence of the known drawbacks related to the electrode-solution interface. Characterizations of the functionalization processes and chemical sensor are described in this communication.  相似文献   

18.
A digital microfluidic (DMF) device was applied to a heterogeneous sandwich immunoassay. The digital approach to microfluidics manipulates samples and reagents in the form of discrete droplets, as opposed to the streams of fluid used in microchannels. Since droplets are manipulated on relatively generic 2-D arrays of electrodes, DMF devices are straightforward to use, and are reconfigurable for any desired combination of droplet operations. This flexibility makes them suitable for a wide range of applications, especially those requiring long, multistep protocols such as immunoassays. Here, we developed an immunoassay on a DMF device using Human IgG as a model analyte. To capture the analyte, an anti-IgG antibody was physisorbed on the hydrophobic surface of a DMF device, and DMF actuation was used for all washing and incubation steps. The bound analyte was detected using FITC-labeled anti-IgG, and fluorescence after the final wash was measured in a fluorescence plate reader. A non-ionic polymer surfactant, Pluronic F-127, was added to sample and detection antibody solutions to control non-specific binding and aid in movement via DMF. Sample and reagent volumes were reduced by nearly three orders of magnitude relative to conventional multiwell plate methods. Since droplets are in constant motion, the antibody–antigen binding kinetics is not limited by diffusion, and total analysis times were reduced to less than 2.5 h per assay. A multiplexed device comprising several DMF platforms wired in series further increased the throughput of the technique. A dynamic range of approximately one order of magnitude was achieved, with reproducibility similar to the assay when performed in a 96-well plate. In bovine serum samples spiked with human IgG, the target molecule was successfully detected in the presence of a 100-fold excess of bovine IgG. It was concluded that the digital microfluidic format is capable of carrying out qualitative and quantitative sandwich immunoassays with a dramatic reduction in reagent usage and analysis time compared to macroscale methods.  相似文献   

19.
The present work demonstrates for the first time patterning of a ready-to-use biosensor with several different biomolecules using Dip-Pen Nanolithography (DPN) for the development of a procedure towards more rapid and efficient multi-sample detection. The biosensor platform used is based on a Surface Acoustic Wave (SAW) device integrated with a parallel-channel microfluidic module, termed as "microfluidics-on-SAW" ("μF-on-SAW"), for reproducible multi-sample analysis. Lipids with different functionalized head groups were patterned at distinct, microfluidic-formed rectangular domains with sharp edges all located on the same sensor surface; pattern quality was verified using a fluorescent microscope. The functionality of the head groups, the efficiency of the patterning method, and the suitability of DPN for the surface modification of the acoustic device were subsequently examined through acoustic experiments. The μF-on-SAW configuration was used to detect specific binding between the pre-patterned functionalized lipids with their corresponding biomolecules. The achievement of an improved sensitivity (5-fold compared to previous acoustic configurations) and reduced preparation time by at least 2 h clearly indicates the suitability of DPN as a direct patterning method for ready-to-use acoustic sensor devices like the μF-on-SAW towards integrated, rapid-analysis, multi-sample biosensing microsystem development.  相似文献   

20.
In this work, a coflowing microfluidic device was used to determine the influence of different mixed sodium dodecyl sulfate (SDS)-poly(ethylene glycol) (PEG) compound systems on dynamic interfacial tension and, by extension, corresponding emulsion droplet sizes. The aqueous solutions were used as the continuous phase in the microfluidic device, while octane was used as the organic dispersed phase. Combined SDS-PEG systems lower the interfacial tension more than either component can alone up to the critical aggregation concentration (CAC) of SDS. Octane droplet sizes produced in the microfluidic device using combined SDS-PEG systems were smaller than those produced using SDS alone, and a reduction in dynamic interfacial tension as determined by drop size followed a pattern similar to that observed in the static case (PEG4000 > PEG600 > PEG400 > PEG200 > PEG8000) with the exception of PEG8000. Finally, a previously formulated model relating interfacial tension to droplet size was used to estimate the dynamic interfacial tensions in the microfluidic device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号