首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxo complex [(1,5-COD)4Pt4(mu3-O)2Cl2](BF4)2 (1) reacts readily with ethylene and norbornylene. The ethylene reaction yields acetaldehyde and a 1:1 mixture of (1,5-COD)Pt(Cl)(CH2CH3) (2) and [(1,5-COD)Pt4(eta3-CH2CHCH(CH3))](BF4) (3), while the norbornylene reaction yields a platinaoxetane complex, the first metallaoxetane to be obtained from the reaction of an oxo complex and an alkene.  相似文献   

2.
The photostimulated reaction of the phthalimide anion (1) with 1-iodoadamantane (2) gave 3-(1-adamantyl) phthalimide (3) (12%) and 4-(1-adamantyl) phthalimide (4) (45%), together with the reduction product adamantane (AdH) (21%). The lack of reaction in the dark and inhibition of the photoinduced reaction by p-dinitrobenzene, 1,4-cyclohexadiene, and di-tert-butylnitroxide indicated that 1 reacts with 2 by an S(RN)1 mechanism. Formation of products 3 and 4 occurs with distonic radical anions as intermediates. The photoinduced reaction of anion 1 with tert-butylmercury chloride (10) affords 4-tert-butylphthalimide (11) as a unique product. By competition experiments toward 1, 1-iodoadamantane was found to be ca. 10 times more reactive than tert-butylmercury chloride.  相似文献   

3.
The reaction of [Ti4(OMe)14Cl2] (1) with an excess of AlMe3 gave the cocrystallite [Ti2(mu-OMe)2(mu-Cl)Cl3(thf)3].[Ti2(mu-OMe)3Cl3(thf)3] (2.3) species in a 1:1 ratio. Similar to 2, [Ti2(mu-OEt)2(mu-Cl)Cl3-(thf)3] (4) was obtained in the reaction of an equimolar mixture of TiCl4 and Ti(OEt)4 with Al/AlMe3. The short distance [2.543(1)av A in 2.3 and 2.599(1) A in 4] between "Ti(+3)" atoms, their diamagnetism, and ELF analysis indicate the presence of a Ti-Ti bond.  相似文献   

4.
A 1 : 3 molar reaction of YI3 and AgI in dimethylformamide (DMF) in the presence of NH4I afforded [Y(DMF)8][Ag3(mu3-I)(mu-I)3I2] (1) with good yield, whereas the similar reaction in dimethylsulfoxide (DMSO) gave complexes [Y(DMSO)8][Ag2(mu-I)3I2] (2) and/or [Y(DMSO)8]2[Ag4(mu3-I)2(mu-I)4I2][I]2 (3), depending on the reaction and crystallization conditions. These discrete heterometallic hybrid compounds 1-3 undergo solid- and solution-state transformations via condensation of iodoargentate anions. So in the confined and solvent-free environment of paratone, crystals of 1 transformed into a 1D zig-zag structure [Y(DMF)8]3+[Ag6(mu4-I)2(mu3-I)2(mu-I)5]1infinity(3-) (4), whereas those of 2 were first converted into 3 and finally into [Y(DMSO)7]4[Ag4(mu3-I)4I4]3 (5). In solution phase, re-crystalization of 1 or 2 from DMSO-toluene gave 3 as an exclusive species, whereas reaction of 1 with 3 equiv of AgI in DMF afforded 4 with good yield. Alternatively, 4 could also be synthesized with excellent yield from a 1 : 6 molar reaction of YI3 and AgI. The above transformations suggest that, for a given metal-organic cation, an iodometallate cluster with higher nuclearity is thermodynamically more stable. Single crystal X-ray structures are reported for all the compounds and a mechanism for the structural transformation of 2 to 3 is proposed. In addition, spectroscopic, thermo-gravimetric and luminescent properties of the complexes 1, 3 and 4, which were obtained exclusively and in pure form, are also described.  相似文献   

5.
The reaction of TaCl5 with a single equivalent of Cl3P=NSiMe3 resulted in the isolation of the perhalogenated (phosphoraniminato) tantalum(V) complex TaCl4(N=PCl3) (1). Reaction of 1 with an excess of THF and subsequent cooling produced crystals of TaCl4(N=PCl3)(THF) (1.THF), which possesses a distorted octahedral Ta center with a THF molecule coordinated trans to the phosphoraniminato ligand. The reaction of 1 with the aminophosphoranimine, (Me3Si)2NPCl2=NSiMe3, resulted in a [3 + 1] cyclocondensation reaction to form the metallacyclic complex, TaCl3(N=PCl3)[N(SiMe3)PCl2N(SiMe3)] (2), which contains a TaNPN four-membered ring and a phosphoraniminato ligand (N=PCl3). The analogous [3 + 1] cyclocondensation reaction between (Me3Si)2NPCl2=NSiMe3 and TaCl5 led to the isolation of TaCl4[N(SiMe3)PCl2N(SiMe3)] (3). An attempt to cleave the NPN ligand from the Ta center in 2 via protonolysis with HCl led to an unusual phosphoraniminato ligand coupling reaction to yield the novel phosphazenium salt [N(PCl2NH2)2][TaCl6] (4). All new compounds (1.THF and complexes 1-4) were characterized by single-crystal X-ray diffraction.  相似文献   

6.
[reaction: see text] Iminooxirane 4 has been generated by the reaction of phenylchlorocarbene (2) with phenyl isocyanate (3) and studied by nanosecond time-resolved infrared spectroscopy. Iminooxirane 4 (1830 cm(-1)) isomerizes to alpha-lactam 5 (1880 cm(-1)) at an observed rate of 3 x 10(4) s(-1). Peak assignments were confirmed by a combination of B3LYP calculations and isotopic labeling. An acyclic transition state was found computationally for the isomerization reaction.  相似文献   

7.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

8.
The cationic ruthenium-hydride complex [(PCy3)2(CO)(CH3CN)2RuH]+BF4- (1) was found to be an effective catalyst for the regioselective coupling reaction of benzocyclic amines and terminal alkynes to form the tricyclic quinoline derivatives. The scope of the reaction was explored by using the catalytic system Ru3(CO)12/NH4PF6. The catalytically active cationic ruthenium-acetylide complex [(PCy3)2(CO)(CH3CN)2RuCCPh]+BF4- was isolated from the reaction of 1 with phenylacetylene.  相似文献   

9.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

10.
[Na{cyclo-(P(5)tBu(4))}] (1) reacts with [CuCl(PCyp(3))(2)] (Cyp=cyclo-C(5)H(9)) and [CuCl(PPh(3))(3)] (1:1) to give the corresponding copper(I) complexes with a tetra-tert-butylcyclopentaphosphanide ligand, [Cu{cyclo- (P(5)tBu(4))}(PCyp(3))(2)] (2) and [Cu{cyclo-(P(5)tBu(4))}(PPh(3))(2)] (3). The CuCl adduct of 2, [Cu(2)(mu-Cl){cyclo-(P(5)tBu(4))}(PCyp(3))(2)] (4), was obtained from the reaction of 1 with [CuCl(PCyp(3))(2)] (1:2). Compounds 2 and 3 rearrange, even at -27 degrees C, to give [Cu(4){cyclo- (P(4)tBu(3))PtBu}(4)] (5), in which ring contraction of the [cyclo-(P(5)tBu(4))](-) anion has occurred. The reaction of 1 with [AgCl(PCyp(3))](4) or [AgCl(PPh(3))(2)] (1:1) leads to the formation of [Ag(4){cyclo-(P(4)tBu(3))PtBu}(4)] (6). Intermediates, which are most probably mononuclear, "[Ag{cyclo-(P(5)tBu(4))}(PR(3))(2)]" (R=Cyp, Ph) could be detected in the reaction mixtures, but not isolated. Finally, the reaction of 1 with [AuCl(PCyp(3))] (1:1) yielded [Au{cyclo-(P(5)tBu(4))}(PCyp(3))] (7), whereas an inseparable mixture of [Au(3){cyclo-(P(5)tBu(4))}(3)] (8) and [Au(4){cyclo-(P(4)tBu(3))PtBu}(4)] (9) was obtained from the analogous reaction with [AuCl(PPh(3))]. Complexes 3-7 were characterised by (31)P NMR spectroscopy, and X-ray crystal structures were determined for 3-9.  相似文献   

11.
Under hydrothermal (solvothermal) reaction conditions chiral compounds 1, 2, and 3 and one acentric compound 4 were obtained by the reaction of Zn(2+) or Cd(2+) with racemic 3-(3-pyridyl)-3-aminopropionic acid (rac-HPAPA). Compounds 1 and 2 crystallized in chiral space group P2(1)2(1)2(1). At 105 degrees C, racemic 3-pyridyl-3-aminopropionic acid (rac-HPAPA) reacted with Zn(ClO4)(2).6 H2O and dehydrogenated in situ to form the first chiral coordination polymer [Zn[(E)-3-C(5)H4N-C(NH2)=CH-COO]]ClO4 (1) with a beta-dehydroamino acid. Beyond 120 degrees C, the reaction of rac-HPAPA with Zn(ClO4)(2).6 H2O deaminates in situ to form chiral coordination polymer [Zn[(E)-3-C5H4N-CH=CH-COO](OH)] (2). At relatively low temperatures (70 degrees C), the solvothermal reaction of Zn(NO3)(2).6 H2O with rac-HPAPA in methanol does not lead to any change in the ligand and results in the formation of a chiral (P2(1)2(1)2(1)) coordination polymer [Zn(papa)(NO3)] (3). The same reaction of Cd(ClO4)(2).6 H2O with HPAPA also does not lead to any change in ligand and results in the formation of noncentric (Cc) coordination polymer [Cd(papa)(Hpapa)]ClO4.H2O (4). The network topology of both 1 and 3 is 10,3a, while 2 has a diamondoid-like (KDP-like, KDP=potassium dideuterophosphate) network. Particularly interesting from a topological perspective is that 4 has an unprecedented three-dimensional network. Compounds 1, 2, 3, and 4 are all second harmonic generation (SHG) active with 1 exhibiting the strongest response, while only 4 also displays good ferroelectric properties.  相似文献   

12.
Gary M. Coppola 《合成通讯》2013,43(9):995-1008
The synthesis of 1,2-dialkyl-3-phenyl-4-quinolinones (1) is readily accomplished by a low-temperature reaction of an N-alkylisatoic anhydride with the therraodynamic potassium enolate of phenyl-acetone. The reaction has also been extended to encompass the synthesis of the more complex 2-(3-hydroxy-propyl)-3-(4-fluorophenyl)-1-methyl-4(1H)-quinolinone (10).  相似文献   

13.
Novel disilene-iron complexes [(E)- (1E) and (Z)-(eta2-R3SiClSi=SiClSiR3)Fe(CO)4 (1Z), SiR3 = tBu2MeSi] were synthesized by the reaction of the corresponding tetrachlorodisilane with an excess amount of K2Fe(CO)4, and the structures of 1E and 1Z were determined by X-ray crystallography. These complexes constitute not only the first transition-metal complexes with E,Z-isomerism but also the first complexes with halogen-substituted disilene ligands. The initial formation of 1Z during the synthetic reaction and the slow one-way isomerization of 1Z to 1E are rationalized by the intervention of the corresponding silylene complex (R3SiCl2Si)(R3Si)Si=Fe(CO)4.  相似文献   

14.
The reaction of di(tert-butyl)aluminum hydride with hydrazine N2H4 afforded the hydrazide (Me3C)2AlN2H3, 1, by the release of elemental hydrogen. Compound 1 is a dimer in solution and in the solid state and possesses a six-membered Al2N4 heterocycle in a twist conformation with two intact N-N bonds. Further reaction of 1 with an excess of HAl(CMe3)2 yielded the tricyclic aluminum and nitrogen rich Al4N4 compound [(Me3C)2AlN2H2]2[Al(CMe3)2]2, 2, in which each N-N bond of a central six-membered Al2N4 ring similar to that of 1 is side-on-coordinated to an Al(CMe3)2 group. The structure of 2 may be interpreted as a dimer of the dialuminum hydrazide (Me3C)2Al-NH-NH-Al(CMe3)2.  相似文献   

15.
The Pictet-Spengler cyclization of the imines (3) prepared by the condensation of L-tryptophan methyl ester (1) and aryl methyl ketones (2), using titanium(IV) isopropoxide as an iminating reagent, quantitatively proceeded, when treated with trifluoroacetic acid (TFA) or formic acid, to provide two diastereomers, that is (1S,3S)-1-aryl-3-isopropoxycarbonyl-1-methyl-1,2,3,4-tetrahydro-beta-carbolines (4) and their (1R,3S)-diastereomers (5), of which the diastereomer ratios varied from 1 to 5 depending on the reaction conditions. The (1R,3S)-diastereomers (5) are thermodynamically more stable than their (1S,3S)-congeners (4), as shown by equilibration experiments in TFA. The conversion of 4 to 5 (also 5 to 4) should occur under acidic conditions by cleavage of the C(1)-N(2) bond with complete retention of configuration at the C-3 chiral center. The low diastereo-selectivity observed in the Pictet-Spengler reaction of 1 and 2 is concluded to be a stereochemical outcome under conditions of kinetic control (lower temperature, shorter reaction time), while the high diastereo selectivity with preferential formation of the more stable isomer (5) is the result of thermodynamically controlled experiments (higher temperature, longer reaction time).  相似文献   

16.
A structurally diverse array of polynuclear complexes has been identified and structurally characterized from the reaction of 6-methylpyridine-2-methanol (1) with a range of cobalt(II) salts under a variety of reaction conditions. A tetranuclear cubane, [Co4(1-H)4Cl4(H2O)3(CH3OH)], was isolated from the reaction of 1 with CoCl2.6H2O and NaOH in MeOH, and a tetranuclear double cubane, [Co4(1-H)6(NO3)2], was isolated from the reaction of 1 with Co(NO3)2.6H2O and NEt3 in MeOH. A bowl-shaped trinuclear complex, [Co3(1-H)3Cl3(dmso)], which features a triply bridging dmso ligand, assembled upon mixing 1 and CoCl2.6H2O in dmso. A 1-D coordination polymer, [Co(1)2(SO4)](infinity), where the sulfate ligands bridge "[Co(1)2]" units in a mu2:eta1 fashion to build up the polymer structure, was isolated from the reaction of 1 with CoSO4.7H2O. The reaction of the structurally related ligand 8-hydroxyquinaldine (2) with a mixture of CoCl2.6H2O and Co(OAc)2.4H2O lead to the formation of the tetranuclear double cubane, [Co4(2-H)6Cl2]. Temperature-dependent magnetic measurements have also been performed for these five complexes along with the hydrogen-bonded helicate [Co2(1)2(1-H)2]. The hydrogen bonds of the helicate mediate antiferromagnetic interactions between the cobalt(II) centers (J = -3.18(9) cm(-1), g = 2.25(2)). The sulfate bridging ligands of [Co(1)2(SO4)](infinity) are poor mediators of magnetic exchange. The Co(II) centers in the double-cubane complexes [Co4(1-H)6(NO3)2] and [Co4(2-H)6Cl2] are strongly antiferromagnetically coupled to each other at low temperature to give an S = 0 ground state. [Co4(1-H)4Cl4(H2O)3(MeOH)] exhibits rather complicated magnetic behavior; however, we did not observe any evidence for single-molecule magnetism as was seen for structurally related complexes.  相似文献   

17.
The Staudinger reaction of N(CH2CH2NR)3P [R = Me (1), Pr (2)] with 1 equiv of N3SO2C6H4Me-4 gave the ionic phosphazides [N(CH2CH2NR)3PN][SO2C6H4Me-4] [R = Me (3), R = Pr (5a)], and the same reaction of 2 with N3SO2C6H2Me3-2,4,6 gave the corresponding aryl sulfinite 5b. On the other hand, the reaction of 1 with 0.5 equiv of N3SO2Ar (Ar = C6H4Me-4) furnished the novel ionic phosphazide [[N(CH2CH2NMe)3P]2(mu-N3)][SO2Ar] (6). Data that shed light on the mechanistic pathway leading to 3 were obtained by low temperature 31P NMR spectroscopy. A crystal and molecular structure analysis of the phosphazide sulfonate [N(CH2CH2NMe)3PN3][SO3C6H4Me-4] (4), obtained by atmospheric oxidation of 3, indicated an ionic structure, the cationic part of which is stabilized by a transannular P-N bond. A crystal and molecular structure analysis of 6 also indicated an ionic structure in which the cation features two untransannulated N(CH2CH2NMe)3P cages bridged by an azido group in an eta 1: mu: eta 1 fashion. The reaction of P(NMe2)3 with N3SO2Ar (Ar = C6H4Me-4) in a 1:0.5 molar ratio furnished [[(Me2N)3P]2(mu-N3)][SO2-Ar] (11) in quantitative yield. On the other hand, the same reaction involving a 1:1 molar ratio of P(NMe2)3 and N3SO2Ar produced a mixture of 11, [(Me2N)3PN3][SO2Ar] (12), and the iminophosphorane (Me2N)3P=NSO2Ar (10). In contrast, the bicyclic tris(amino)phosphines MeC(CH2NMe)3P (7) and O=P(CH2NMe)3P (8) reacted with N3SO2-Ar (Ar = C6H4Me-4) to give the iminophosphorane MeC(CH2NMe)3P=NSO2Ar (14) (structured by X-ray means) and O=P(CH2NMe)3P=NSO2Ar (16) via the intermediate phosphazides MeC(CH2NMe)3PN3SO2Ar (13) and O=P(CH2NMe)3PN3SO2Ar (15), respectively. The variety of products obtained from the reactions of arylsulfonyl azides with proazaphosphatranes (1 and 2), acyclic P(NMe2)3, bicyclic tris(amino)phosphines 7 and 8 are rationalized in terms of steric and basicity variations among the phosphorus reagents.  相似文献   

18.
N1-Trifluoroethyl-4-methoxy-5-chloro-3-pyridazone (4) was synthesized by the substitution reaction of 4methoxy-5-chloro-3-pyridazone (1) with trifluoroethyl trifluoromethanesulfonate (A) at basic condition. In the most of reaction conditions, N1-methyl-4-methoxy-5-chloro-3-pyridazone (2) was obtained as a major by-product, which means that the methyl group in the 4-methoxy shifted to N-1 position inter-molecularly aided by A or trifluoroethyl methanesulfonate (B). We obtained N1-methyl-4-trifluoro-ethoxy-5-chloro-3-pyridazone (3) in the reaction of 1 with B at higher temperature in different solvents with different yield (Table 1 ), which mechanism was shown in Figure 1. When we tried to synthesize 4 in the reaction of 1 with trifluoroethyl toluenesulfonate under basic condition, 6 was obtained (Figure 2). All the detailed mechanisms are undergoing investigated.  相似文献   

19.
The azadithiolate (SCH2NHCH2S) cofactor proposed to occur in the Fe-only hydrogenases forms efficiently by the condensation of Fe2(SH)2(CO)6 (1), formaldehyde, and ammonia (as (NH4)2CO3). The resulting Fe2[(SCH2)2NH](CO)6 reacts with Et4NCN to give (Et4N)2[Fe2[(SCH2)2NH](CO)4(CN)2], for which crystallographic characterization confirmed an axial N-H and an elongated C-S bond of 1.858(3) A. Primary amines RNH2 (R = Ph, t-Bu) also participate in the condensation reaction, and Fe3S2(CO)9 can be employed in place of 1. Mechanistically, the Fe2[(SCH2)2NH] moiety is shown to arise via two pathways: (i) via the intermediacy of Fe2[(SCH2OH)2](CO)6, which was detected and shown to react with amines, and (ii) via the reaction of 1 with cyclic imines (CH2)3(NR)3 (R = Ph, Me). The reaction of 1 with (CH2)6N4 (hexamethylenetetramine) gives Fe2[(SCH2)2NH](CO)6. Trace amounts of Fe2[(SCH2)2N-t-Bu](CO)6 arise via the reaction of aqueous FeSO4, formaldehyde, NaSH, and t-BuNH2 under an atmosphere of CO.  相似文献   

20.
4-Ethyl-1-hydroxy-3-(4-hydroxyphenyl)-2-oxa-1-boranaphthalene (4) is formed in 78% yield from the reaction of 1-(4-methoxyphenyl)-2-phenylbutan-1-one with an of excess boron tribromide in dichloromethane followed by treatment with water. Reaction of 4 with iodine in aqueous sodium hydroxide gives a second oxaboracycle, 3-ethyl-1-hydroxy-3-(4-hydroxybenzoyl)-2,1-benzoxaborolane (5). The X-ray crystal structure determinations of both boron heterocycles are reported. Other new compounds reported are 1-(4-hydroxyphenyl)-2-(1-hydroxyphenyl)-butan-1-one (6), formed by reaction of 4 with alkaline hydrogen peroxide, and 1-(4-hydroxyphenyl)-2-(2-biphenyl)-butan-1-one (8), formed by coupling of 4 with bromobenzene in the presence of Pd(PPh3) 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号