首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
We have studied survival and rotational excitation probabilities of H(2)(v(i) = 1, J(i) = 1) and D(2)(v(i) = 1, J(i) = 2) upon scattering from Cu(111) using six-dimensional (6D) adiabatic (quantum and quasi-classical) and non-adiabatic (quasi-classical) dynamics. Non-adiabatic dynamics, based on a friction model, has been used to analyze the role of electron-hole pair excitations. Comparison between adiabatic and non-adiabatic calculations reveals a smaller influence of non-adiabatic effects on the energy dependence of the vibrational deexcitation mechanism than previously suggested by low-dimensional dynamics calculations. Specifically, we show that 6D adiabatic dynamics can account for the increase of vibrational deexcitation as a function of the incidence energy, as well as for the isotope effect observed experimentally in the energy dependence for H(2)(D(2))/Cu(100). Furthermore, a detailed analysis, based on classical trajectories, reveals that in trajectories leading to vibrational deexcitation, the minimum classical turning point is close to the top site, reflecting the multidimensionally of this mechanism. On this site, the reaction path curvature favors vibrational inelastic scattering. Finally, we show that the probability for a molecule to get close to the top site is higher for H(2) than for D(2), which explains the isotope effect found experimentally.  相似文献   

2.
Static—static distorted wave and vibrationally adiabatic distorted wave calculations have been performed for the product rotational distributions of the H + D2 → HD + D reaction using an accurate ab initio potential energy surface. Comparison is made with coupled states and quasiclassical trajectory calculations as well as with experimental measurements.  相似文献   

3.
A model for simulating photoelectron spectra of the triatomic van der Waals complexes containing stable atomic anion and diatomic molecule is proposed and applied to the Cl(-)...H(2) and Cl(-)...D(2) anions. The model assumes adiabatic separation of the electronic and nuclear motions and localization of the photodetachment act at the atomic chromophore. Under these approximations, the electronic transition dipole moment matrix elements are evaluated using the atoms-in-molecule approach and explicit expressions for the rovibrational line strength factors are derived. The energies and intensities of a number of rovibronic photoelectron transitions are calculated for the Cl(-)...H(2) and Cl(-)...D(2) anions within the adiabatic bender model, i.e., with the full separation of the vibrational motions, whereas the simulations of the broad spectral envelopes are performed using the equilibrium conditions, asymmetric line shape function, and two choices of the relative abundances of the para- and ortho-forms of the complex. The simulations reproduce experimental spectra reasonably well allowing for their unambiguous assignment in terms of vibronic transitions fully consistent with the previous time-dependent calculations. Agreement with the previous theoretical works, manifestations of non-Franck-Condon effects, and implications to the assessment of the neutral potential energy surfaces are discussed.  相似文献   

4.
We consider experimental implications for the Mu + Cl2, H + Cl2, and D + Cl2 reactions of the extended London—Eyring—Polanyi—Sato (LEPS) potential energy surface derived from experimental data in paper I. In the present calculations, it is necessary to make additional implicit and explicit assumptions concerning the three-dimensional (3D) nature of the potential surface, since the inversion procedure of paper I yields information only on the collinear (1D) part of the surface. We have performed accurate 1D quantum calculations of reaction probabilities, which are then transformed into 3D by an information theoretic 1D → 3D transformation incorporating a constraint to allow for angular momentum transfer effects in light+heavy—heavy atom reactions. This procedure implicitly accounts for the 3D nature of the potential surface. The calculated vibrational and vibrotational product distributions are in good agreement with those determined in thermal chemiluminescence experiments. The Sato parameters for the 1D surface also define a full 3D surface. This is used as an approximation to the true surface, and its properties are explored in 3D quasiclassical trajectory calculations. Comparison is made for the H and D reactions with available chemiluminescence, molecular beam and kinetic experimental data for differential and total reaction cross sections, energy disposal, rate coefficients and Arrhenius parameters. Some kinetic isotope effects in the Mu, H, and D reactions are discussed using vibrationally adiabatic theory. Comparison is also made with results from other calculations in the literature for the H + Cl2 and D + Cl2 reactions.  相似文献   

5.
Inspired by a recent successful adiabatic-hindered-rotor treatment for parahydrogen pH(2) in CO(2)-H(2) complexes [H. Li, P.-N. Roy, and R. J. Le Roy, J. Chem. Phys. 133, 104305 (2010); H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)], we apply the same approximation to the more challenging H(2)O-H(2) system. This approximation reduces the dimension of the H(2)O-H(2) potential from 5D to 3D and greatly enhances the computational efficiency. The global minimum of the original 5D potential is missing from the adiabatic 3D potential for reasons based on solution of the hindered-rotor Schro?dinger equation of the pH(2). Energies and wave functions of the discrete rovibrational levels of H(2)O-pH(2) complexes obtained from the adiabatic 3D potential are in good agreement with the results from calculations with the full 5D potential. This comparison validates our approximation, although it is a relatively cruder treatment for pH(2)-H(2)O than it is for pH(2)-CO(2). This adiabatic approximation makes large-scale simulations of H(2)O-pH(2) systems possible via a pairwise additive interaction model in which pH(2) is treated as a point-like particle. The poor performance of the diabatically spherical treatment of pH(2) rotation excludes the possibility of approximating pH(2) as a simple sphere in its interaction with H(2)O.  相似文献   

6.
The effect on the thermal rate constant and the differential cross-sections of varying the dimensionality of quantum scattering calculations of a polyatomic reaction is investigated. The rotating bond approximation (RBA; 3D) and a rotating line approximation (RLA; 2D) are used for the CH4 + OH → CH3 + H2O reaction. It is found that the RBA and RLA results are in close agreement when an adiabatic treatment is used for the degree of freedom which is treated explicitly in the RBA but not in the RLA.  相似文献   

7.
In this paper a new propagation scheme is proposed for atom-diatom reactive calculations using a negative imaginary potential (NIP) within a time independent approach. It is based on the calculation of a rotationally adiabatic basis set, the neglected coupling terms being re-added in the following step of the propagation. The results of this approach, which we call two steps rotationally adiabatic coupled states calculations (2-RACS), are compared to those obtained using the adiabatic DVR method (J. C. Light and Z. Bazic, J. Chem. Phys., 1987, 87, 4008; C. Leforestier, J. Chem. Phys., 1991, 94, 6388), to the NIP coupled states results of the team of Baer (D. M. Charutz, I. Last and M. Baer, J. Chem. Phys., 1997, 106, 7654) and to the exact results obtained by Zhang (J. Z. H. Zhang and W. H. Miller, J. Chem. Phys., 1989, 91, 1528) for the D + H(2) reaction. The example of implementation of our method of computation of the adiabatic basis will be given here in the coupled states approximation, as this method has proved to be very efficient in many cases and is quite fast.  相似文献   

8.
The H(+)+D(2) and D(+)+H(2) reactive collisions are studied using a recently proposed adiabatic potential energy surface of spectroscopic accuracy. The dynamics is studied using an exact wave packet method on the adiabatic surface at energies below the curve crossing occurring at approximately 1.5 eV above the threshold. It is found that the reaction is very well described by a statistical quantum method for a zero total angular momentum (J) as compared with the exact ones, while for higher J some discrepancies are found. For J >0 different centrifugal sudden approximations are proposed and compared with the exact and statistical quantum treatments. The usual centrifugal sudden approach fails by considering too high reaction barriers and too low reaction probabilities. A new statistically modified centrifugal sudden approach is considered which corrects these two failures to a rather good extent. It is also found that an adiabatic approximation for the helicities provides results in very good agreement with the statistical method, placing the reaction barrier properly. However, both statistical and adiabatic centrifugal treatments overestimate the reaction probabilities. The reaction cross sections thus obtained with the new approaches are in rather good agreement with the exact results. In spite of these deficiencies, the quantum statistical method is well adapted for describing the insertion dynamics, and it is then used to evaluate the differential cross sections.  相似文献   

9.
A theoretical investigation on the nonadiabatic processes of the full three-dimensional D(+)+H(2) and H(+)+D(2) reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H(2) or D(2). Also, this study provides reaction probabilities of these three processes for the total angular momentum J=0 and ground initial vibrational state of H(2) or D(2). The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.  相似文献   

10.
An ab initio study of the interactions between H2O and Cl2+ and H2O and Br2+ has been performed. We present calculations using both the UMP2 level and the UCCSD(T) level of correlation with the aug-cc-pVTZ basis. The aug-cc-pVQZ basis was tested for selected geometries and was found to yield results similar to the smaller basis. For the H2O-Cl2+ cation, a C2v structure has been identified as the minimum, with De = 6500 cm-1 (78 kJ/mol). A low-lying excited state has De = 6000 cm-1 (72 kJ/mol). The adiabatic and vertical ionization energies of the complex are 10.7 and 11.0 eV, compared to the experimental adiabatic value, 11.5 eV, for free chlorine. For the H2O-Br2+ cation, the calculations are more subtle due to second-order Jahn-Teller effects and result in a Cs structure at the minimum, with De = 6300 cm-1 (75 kJ/mol), yielding an adiabatic ionization energy of 9.9 eV compared to the corresponding experimental value, 10.5 eV, for free bromine. The relatively large binding energies give rise to strong normal mode couplings such that the halogen stretching mode becomes mixed with the water bending and other intermolecular modes, resulting in very large frequency shifts. Vertical ionization energies and ion vibrational frequencies also are reported and used to discuss possible experiments to obtain more precise data for each of the complexes.  相似文献   

11.
Ab initio molecular orbital theory has been used to calculate accurate enthalpies of formation and adiabatic electron affinities or ionization potentials for N3, N3-, N5+, and N5- from total atomization energies. The calculated heats of formation of the gas-phase molecules/ions at 0 K are DeltaHf(N3(2Pi)) = 109.2, DeltaHf(N3-(1sigma+)) = 47.4, DeltaHf(N5-(1A1')) = 62.3, and DeltaHf(N5+(1A1)) = 353.3 kcal/mol with an estimated error bar of +/-1 kcal/mol. For comparison purposes, the error in the calculated bond energy for N2 is 0.72 kcal/mol. Born-Haber cycle calculations, using estimated lattice energies and the adiabatic ionization potentials of the anions and electron affinities of the cations, enable reliable stability predictions for the hypothetical N5(+)N3(-) and N5(+)N5(-) salts. The calculations show that neither salt can be stabilized and that both should decompose spontaneously into N3 radicals and N2. This conclusion was experimentally confirmed for the N5(+)N3(-) salt by low-temperature metathetical reactions between N5SbF6 and alkali metal azides in different solvents, resulting in violent reactions with spontaneous nitrogen evolution. It is emphasized that one needs to use adiabatic ionization potentials and electron affinities instead of vertical potentials and affinities for salt stability predictions when the formed radicals are not vibrationally stable. This is the case for the N5 radicals where the energy difference between vertical and adiabatic potentials amounts to about 100 kcal/mol per N5.  相似文献   

12.
The uranyl tetrachloride dianion (UO(2)Cl(4) (2-)) is observed in the gas phase using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemical calculations. Photoelectron spectra of UO(2)Cl(4) (2-) are obtained at various photon energies and congested spectral features are observed. The free UO(2)Cl(4) (2-) dianion is found to be highly stable with an adiabatic electron binding energy of 2.40 eV. Ab initio calculations are carried out and used to interpret the photoelectron spectra and elucidate the electronic structure of UO(2)Cl(4) (2-). The calculations show that the frontier molecular orbitals in UO(2)Cl(4) (2-) are dominated by the ligand Cl 3p orbitals, while the U-O bonding orbitals are much more stable. The electronic structure of UO(2)Cl(4) (2-) is compared with that of the recently reported UO(2)F(4) (2-) [P. D. Dau, J. Su, H. T. Liu, J. B. Liu, D. L. Huang, J. Li, and L. S. Wang, Chem. Sci. 3 1137 (2012)]. The electron binding energy of UO(2)Cl(4) (2-) is found to be 1.3 eV greater than that of UO(2)F(4) (2-). The differences in the electronic stability and electronic structure between UO(2)Cl(4) (2-) and UO(2)F(4) (2-) are discussed.  相似文献   

13.
An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H(2) and D(2) from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.  相似文献   

14.
We have carried out large-scale calculations for accurate vibrational energy levels of formaldehyde and hydrogen peroxide. The discrete variable representations of the radial and angular coordinates are employed together with the contraction scheme resulting from several diagonalization/truncation steps. The global potential energy surface due to Carter et al. [J. Mol. Spectrosc. 90 (1997) 729] is used for H2CO and due to Koput et al. [J. Phys. Chem. A 102 (1998) 6325] for H2O2. For both molecules, the calculated vibrational energy levels are characterized by combining vibrationally averaged geometries and expectation values of rotational constants with several adiabatic projection schemes for automatic quantum number assignments. The energy levels of H2CO involving the excited v2 and v3 vibrations appear as resonances beyond the zero-order picture consisting of uncoupled 3D stretching and 2D bending modes. The torsional energy levels of H2O2 are studied in great detail and different energy patterns occurring below and above the cis barrier are discussed. Our full dimensional calculations for H2O2 have shown that the OH triad levels, 2vOH, are symmetry adapted local mode states.  相似文献   

15.
We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-->H+O2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.  相似文献   

16.
An accurate global potential-energy surface (PES) is reported for H5(+) based on more than 100,000 CCSD(T)/aug-cc-pVTZ ab initio energies. This PES has full permutational symmetry with respect to interchange of H atoms and dissociates to H3(+) and H2. Ten known stationary points of H5(+) are characterized and compared to previous ab initio calculations. Quantum diffusion Monte Carlo calculations are performed on the PES to obtain the zero-point energy of H5(+) and the anharmonic dissociation energy (D0) of H5(+) --> H3(+) + H2. The rigorous zero-point state of H4D+ is also calculated and discussed within the context of a strictly classical approach to obtain the branching ratio of the reaction H4D+ --> H3(+) + HD and H2D+ + H2. Such an approach is taken using the PES and critiqued based on the properties of the quantum zero-point state. Finally, a simple procedure for adding the long range-interaction energy is described.  相似文献   

17.
The electronic and rovibronic structures of the cyclopentadienyl cation (C(5)H(5) (+)) and its fully deuterated isotopomer (C(5)D(5) (+)) have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy and ab initio calculations. The vibronic structure in the two lowest electronic states of the cation has been determined using single-photon ionization from the X (2)E(1) (") ground neutral state and 1+1(') resonant two-photon ionization via several vibrational levels of the A (2)A(2) (") excited state. The cyclopentadienyl cation possesses a triplet ground electronic state (X(+) (3)A(2) (')) of D(5h) equilibrium geometry and a first excited singlet state (a(+) (1)E(2) (')) distorted by a pseudo-Jahn-Teller effect. A complete analysis of the Emultiply sign in circlee Jahn-Teller effect and of the (A+E)multiply sign in circlee pseudo-Jahn-Teller effect in the a(+) (1)E(2) (') state has been performed. This state is subject to a very weak linear Jahn-Teller effect and to an unusually strong pseudo-Jahn-Teller effect. Vibronic calculations have enabled us to partially assign the vibronic structure and determine the adiabatic singlet-triplet interval (1534+/-6 cm(-1)). The experimental spectra, a group-theoretical analysis of the vibronic coupling mechanisms, and ab initio calculations were used to establish the topology of the singlet potential energy surfaces and to characterize the pseudorotational motion of the cation on the lowest singlet potential energy surface. The analysis of the rovibronic photoionization dynamics in rotationally resolved spectra and the study of the variation of the intensity distribution with the intermediate vibrational level show that a Herzberg-Teller mechanism is responsible for the observation of the forbidden a(+) (1)E(2) (')<--A (2)A(2) (") photoionizing transition.  相似文献   

18.
The sulfur dioxide molecule (SO2) is an important atmospheric pollutant primarily from sulfur-containing materials combustion processes[1]. Because of its im- portance in atmospheric photochemistry, as well as in atmospheric dynamics, this molecule has been the subject of much experimental[2―10] and theoreti- cal[11―19] photochemical study for many years. They provide a wealth of information about the SO2 spec- trum, predissociation mechanism, vibration including vibration-rotation interact…  相似文献   

19.
We report full-dimensional, electronically adiabatic potential energy surfaces (PESs) for the ground state (1A(')) and excited state (2A(')) of OH(3). The PESs are permutationally invariant fits to roughly 23,000 electronic energies (MRCI + Q/aVTZ). Classical trajectory calculations of the postquenching dynamics of OH A (2)Σ(+) are carried out on the 1A(') PES for H(2) and D(2), at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to "adiabatic" and "diabatic" models of the dynamics, respectively. Branching ratios of reactive to nonreactive channels from separate C(2v), C(∞v), and C(s) symmetries of CoIs are calculated, as are final rovibrational state distributions of OH and H(2) products. The rovibrational distributions of the OH and D(2) products, the D/H-atom translational energy distribution are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The vibrational state distributions of H(2)O and HOD (although not measured by experiment) are also presented.  相似文献   

20.
《Chemical physics letters》1985,122(3):205-213
The semiclassical interpretation of reactive resonances as dynamically confined orbits is extended for the F + H2 reaction by construction of resonant-state wavefunctions according to a time-dependent formalism for Gaussian wavepacket dynamics. The partitioning of nodal curves between entrance and exit channels for the collinear resonances agrees with adiabatic theory and nodal surfaces for the 3D probability density distribution qualitatively agree with quantal calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号