首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent papers, we have argued that kinetically constrained coarse-grained models can be applied to understand dynamic properties of glass-forming materials, and we have used this approach in various applications that appear to validate this view. In one such paper [J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003)], among other things we argued that this approach also explains why the heat-capacity discontinuity at the glass transition is generally larger for fragile materials than for strong materials. In the preceding article, Biroli, Bouchaud, and Tarjus have objected to our explanation on this point, arguing that the class of models we apply is inconsistent with both the absolute size and the temperature dependence of the experimental specific heat. Their argument, however, neglects parameters associated with the coarse graining. Accounting for these parameters, we show here that our treatment of dynamics is not inconsistent with heat-capacity discontinuities.  相似文献   

2.
The onset of crystallization of supercooled water upon lowering the temperature is highly unpredictable, depending strongly on the specific sample and its treatment. The mechanism causing this is to be investigated and may be found in terms of the dependence of the transition temperature on the shear acting in the convecting liquid. This effect of shear on the fluctuation spectrum is considered qualitatively.  相似文献   

3.
Summary The oxygen content in liquid water has been measured in the temperature range between 0°C and –7°C. The measurements have been carried out with an amperometric needle sensor in glass-capillaries with an inner diameter of 1.7 mm. It has been obtained that the oxygen content in water is rapidly increasing as the temperature is lowered below 0°C. At –5°C the concentration of oxygen in water at constant partial pressure of oxygen is by 13% higher than that at +3°C. The increase of oxygen content seems to be related to the unusual temperature dependence of heat capacity, density and isothermal compressibility of supercooled water.Herrn Professor Ulrich Wannagat in alter Verbundenheit zum 70. Geburtstag gewidmet.  相似文献   

4.
Homogeneous ice nucleation from supercooled water was studied in the temperature range of 220-240 K through combining the forward flux sampling method (Allen et al., J. Chem. Phys., 2006, 124, 024102) with molecular dynamics simulations (FFS/MD), based on a recently developed coarse-grained water model (mW) (Molinero et al., J. Phys. Chem. B, 2009, 113, 4008). The calculated ice nucleation rates display a strong temperature dependence, ranging from 2.148 ± 0.635 × 10(25) m(-3) s(-1) at 220 K to 1.672 ± 0.970 × 10(-7) m(-3) s(-1) at 240 K. These rates can be fitted according to the classical nucleation theory, yielding an estimate of the effective ice-water interface energy γ(ls) of 31.01 ± 0.21 mJ m(-2) for the mW water model. Compared to experiments, our calculation underestimates the homogeneous ice nucleation rate by a few orders of magnitude. Possible reasons for the discrepancy are discussed. The nucleating ice embryo contains both cubic ice Ic and hexagonal ice Ih, with the fraction of each structure being roughly 50% when the critical size is reached. In particular, a novel defect structure containing nearly five-fold twin boundaries is identified in the ice clusters formed during nucleation. The way such defect structure is formed is found to be different from mechanisms proposed for the formation of the same defect in metallic nanoparticles and thin film. The quasi five-fold twin boundary structure found here is expected to occur in the crystallization of a wide range of materials with the diamond cubic structure, including ice.  相似文献   

5.
Double-quantum-filtered NMR and T(1) inversion-recovery spectroscopy were employed to exploit the temperature-dependent dynamics of D(2)O confined in MCM-41. Samples with three pore sizes of 1.58, 2.03, and 2.34 nm and two D(2)O contents were investigated. The reorientation correlation times of confined D(2)O in variously sized pores exhibit different temperature dependencies. The results reveal that the D(2)O molecules at fast motion site remain mobile below approximately 225 K and a liquid-liquid phase transition occurs around this temperature for all samples studied. This temperature is thought to be unreachable for supercooled D(2)O. Particularly, in 20 wt % D(2)O loaded samples with pore diameters of 1.58 and 2.03 nm, the reorientational correlation times of D(2)O at fast motion site exhibit Arrhenius behavior between 225 and 290 K, while other samples show power law dependency. Thus, a liquid phase of the fragile type in bigger pores changes to the strong type in samples with smaller pores.  相似文献   

6.
By use of an optical trap, we can levitate micrometer-sized drops of purified water and cool them below the melting point free from contact freezing. Raman spectra of the OH stretching band were obtained from those supercooled water droplets at temperatures down to -35 °C. According to the two-state model, an enthalpy change due to hydrogen-bond breaking is derived from temperature dependence of the spectral profile. The isobaric heat capacity calculated from the enthalpy data shows a sharp increase as the temperature is lowered below -20 °C in good agreement with conventional thermodynamic measurements.  相似文献   

7.
8.
Confining water in lab synthesized nanoporous silica matrices MCM-41-S with pore diameters of 18 and 14 A, we have been able to study the molecular dynamics of water in deeply supercooled states, down to 200 K. Using quasielastic neutron scattering and analyzing the data with the relaxing cage model, we determined the temperature variation of the average translational relaxation time and its Q-dependence. We find a clear evidence of an abrupt change of the relaxation time behavior at T approximately equal to 225 K, which we interpreted as the predicted fragile-to-strong liquid-liquid transition.  相似文献   

9.
T. G. Shevchenko Kiev State University. Translated from Zhurnal Strukturnoi Khimii, Vol. 31, No. 3, pp. 141–143, May–June, 1990.  相似文献   

10.
11.
12.
We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.  相似文献   

13.
14.
A second-order phase transition into the ferroelectric state was shown to occur in liquid water at −40°C. This finding was in agreement with several experiments with supercooled water, in which physical value singularities were observed at the specified temperature. The known maximum of water density at +4°C is a result of the joint action of thermal expansion and density fluctuations caused by closeness to the phase transition point.  相似文献   

15.
Complex refractive indices of supercooled liquid water have been retrieved at 269, 258, 252, and 238 K in the 4500-1100 cm(-1) wavenumber regime from series of infrared extinction spectra of micron-sized water droplets. The spectra collection was recorded during expansion experiments in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. A Mie inversion technique was applied to derive the low-temperature refractive index data sets by iteratively adjusting the room-temperature optical constants of liquid water until obtaining the best agreement between measured and calculated infrared spectra of the supercooled water droplets. The new optical constants, revealing significant temperature-induced spectral variations in comparison with the room-temperature refractive indices, proved to be in good agreement with data sets obtained in a recent study. A detailed analysis was performed to elaborate potential inaccuracies in the retrieval results when deriving optical constants from particle extinction spectra using an iterative procedure.  相似文献   

16.
The properties of water above the glass transition temperature are highly controversial. By using time-of-flight secondary ion mass spectrometry (TOF-SIMS), the presence of deeply supercooled water is manifested by dissolution of LiCl in the pure amorphous water films heated at 140-155 K and the formation of aqueous LiCl solutions. Two phases of deeply supercooled water, that lead to the dilute and concentrated LiCl solutions, are clearly identified. The former is short-lived and merges into the latter, whereas the latter is basically identical to normal liquid water as far as the solubility of LiCl is concerned.  相似文献   

17.
Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.  相似文献   

18.
19.
20.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号