首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanoparticles exhibit unique properties due to their ability to form aggregates of atoms of diverse morphology shapes and sizes of which depend, to a considerable extent, on specific features of the nearest environment. The nature of gold nanoparticles varies in a wide range: from the particles with pronounced Lewis acidic properties to the negatively charged particles bearing a formal zero-valence charge. The most examples of new reactions catalyzed by gold nanoparticles include unsaturated compounds and strong nucleophiles (such as amines) as substrates. This short review provides a digest of the catalytic properties of gold nanoparticles. The main attention is paid to the possible role of certain forms of the metal in catalytic reactions. Of special interest are reactions in which effects of synergism of gold and other active species or second metals present in the catalyst are revealed or a size effect is established.  相似文献   

2.
The immobilization of gold nanoparticles in anion exchange resin and their quantitative retrieval by means of a cationic surfactant, cetylpyridinium chloride, is studied. The resin-bound gold nanoparticles (R-Au) have been used successfully as a solid-phase catalyst for the reduction of 4-nitrophenol by sodium borohydride. At the end of the reaction, the solid matrix remains activated and separated from the product. The recycling of catalyst particles after the quantitative reduction of 4-nitrophenol and the recovery of gold nanoparticles with unaffected particle morphology from the resin-bound gold nanoparticle entity have been reported.  相似文献   

3.
Biological applications of gold nanoparticles   总被引:2,自引:0,他引:2  
This critical review gives a short overview of the widespread use of gold nanoparticles in biology. We have identified four classes of applications in which gold nanoparticles have been used so far: labelling, delivering, heating, and sensing. For each of these applications the underlying mechanisms and concepts, the specific features of the gold nanoparticles needed for this application, as well as several examples are described (142 references).  相似文献   

4.
Free and functionalized gold nanoparticles are synthesized by laser ablation of a gold metal plate immersed in dimethyl sulfoxide, acetonitrile, and tetrahydrofuran. Functionalized gold nanoparticles are synthesized in a one-step process thanks to the solubility of the ligands in these solvents. It is possible to have significant control of the concentration, aggregation, and size of the particles by varying a few parameters. UV-vis spectroscopy and transmission electron microscopy are used for the characterization of the nanoparticles. The Mie model for spherical particles and the Gans model for spheroids allow a fast and reliable interpretation of experimental UV-vis spectra.  相似文献   

5.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

6.
Gold nanoparticles surface-coated with thyminethiol derivatives containing long hydrocarbon chains have been prepared. The diameter of the particles is 2.2 and 7.0 nm, respectively, with a relatively narrow size distribution. Thyminethiol derivatives are attached to the gold particle surfaces with thymine moieties as the end groups. The colloid stability of the gold nanoparticles as a function of the type and concentration of monovalent salt, pH, and particle size was investigated in alkaline, aqueous solutions. The gold particles are stable in concentrated NaCl and KCl solutions, but are unstable in concentrated LiCl and CsCl solutions. The larger gold particles are more sensitive to salt concentration and aggregate at lower salt concentrations. The reversible aggregation and dispersion of the gold particles can be controlled by changing the solution pH. The larger gold particles can be dispersed at higher pH and aggregate faster than the smaller particles, due to stronger van der Waals forces between the larger particles. Hydration forces play an important role in stabilizing the particles under conditions where electrostatic forces are negligible. The coagulation of the gold nanoparticles is attributed to van der Waals attraction and reduced hydration repulsion in the presence of LiCl and CsCl.  相似文献   

7.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

8.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

9.
The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.  相似文献   

10.
Although a number of computational studies have examined the relative stability of icosahedral and decahedral gold clusters from 1 to 3 nm in size, few studies have focussed on the variety of face-centered cubic (fcc) nanoparticles in this size regime. In most cases small fcc gold particles are assumed to adopt the truncated octahedral shape, but in light of the fact that the shape and structure of gold nanoparticles is known to vary, the relative stability of fcc polyhedra may change with size. Presented here are results of first-principles calculations investigating the preferred shape of gold particles less than 3 nm in size. Our results indicate that the equilibrium shape of fcc gold nanoparticles less than 1 nm is the cuboctahedron, but this shape rapidly becomes energetically unstable with respect to the truncated octahedron, octahedron and truncated cube shapes as the size increases.  相似文献   

11.
We report in this study the presence of Janus particles, which are candidates for use with electronic color papers. We used negatively charged polystyrene particles (370 nm) as the core particles, and gold was then sputtered onto their packed monolayer under several conditions. The sputtered particles were next redispersed into the aqueous medium by gentle sonication. Gold nanoparticles localized on one side of the cores could also serve as seeds for subsequent shell growth by electroless gold plating. Through these treatments, a series of well-dispersed Janus particles were obtained with gold nanostructures of different size and shape only on one side. Their dispersions showed different colors originating from the surface plasmon resonance absorption of gold nanoparticles localized on the hemisphere. The particles obtained by this approach have potential applications such as in sensors and electronic color paper.  相似文献   

12.
The evolution of size distributions of gold nanoparticles under pulsed laser irradiation (Nd:YAG, lambda = 355 nm, pulse width 30 ps) was carefully observed by transmission electron microscopy. Interestingly, the initial monomodal size distribution of gold nanoparticles turned into a bimodal one, with two peaks in the number of particles, one at 6 nm and the other at 16-24 nm. The sizes for small particles depended very little on the irradiated laser energy. This change is attributed to laser-induced size reduction of the initial gold nanoparticles followed by the formation of small particles. In our analysis, we extracted a characteristic value for the size-reduction rate per one pulse and revealed that laser-induced size reduction of gold nanoparticles occurred even below the boiling point. When laser energy is insufficient for the boiling of particles, formation of gold vapor around liquid gold drops is thought to cause the phenomenon. With enough laser energy for the boiling, the formation of gold vapor around and inside liquid gold drops is responsible for the phenomenon. We also observed particles with gold strings after one pulse irradiation with a laser energy of 43 mJ cm(-2) pulse(-1), which is sufficient energy for the boiling. It is considered that such particles with gold strings are formed by the projection of gaseous gold from liquid gold drops with some volume of liquid gold around the bubble. On the basis of comparison with previous work, picosecond laser pulses are thought to be the most efficient way to cause laser-induced size reduction of gold nanoparticles.  相似文献   

13.
A new aqueous-phase method for the preparation of stable gold nanoparticles by using 1,4,7,10,13,16,21,24-octaazabicyclo[8.8.8]hexacosane (azacryptand) as both reductant and stabilizer is reported. Reduction of HAuCl(4) with azacryptand at room temperature yields nano-sized particles within a short time. The obtained gold nanoparticles have been characterized by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. Comparison of FT-IR spectra of azacryptand before and after reaction revealed that azacryptand molecules reduce gold ions as the amino moieties in the molecules are oxidized to imino groups. The prepared gold nanoparticles show efficient surface-enhanced Raman scattering properties and can effectively catalyze reduction of 4-nitrophenol by sodium borohydride in aqueous solution.  相似文献   

14.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

15.
Manifestations of thermostimulated formation and subsequent transformation of silver and gold nanoparticles in porous opal and Vycor glass matrices are studied using optical spectroscopy. Two temperature ranges for silver nanoparticles are revealed, where first-type particles transform into another type of particles. With gold nanoparticles in these matrices, a temperature range in which one type of particles transforms into another type is established. An effect of complete blackening of Vycor glass samples, caused by their annealing, is revealed, and a rationalization of this effect is given.  相似文献   

16.
Multi-branched gold nanoparticles were synthesized in high-yield through the reduction of HAuCl(4) by using hydrazine as a reducing agent. Practically 100% of the particles have numerous branches. The high reduction capability of hydrazine is found to be crucial for the formation of these branched gold nanoparticles. Their size can be controlled from 20 to 130 nm by varying the amounts of hydrazine. The prepared nanoparticles exhibit efficient surface-enhanced Raman scattering (SERS) properties and the SERS activity of the particles depends on the aspect ratio of their branches, which are most likely related to a great increase in the localized electromagnetic field enhancement from their unique sharp surface features arising from the branches.  相似文献   

17.
Mono-dispersed gel particles with projections were prepared by dispersion polymerization with ethyleneglycol dimethacrylate and a polyethyleneglycol (PEG) block macro azo initiator in H2O/ethanol solutions. The effects of molecular weight of PEG blocks and polymerization conditions on the morphology and some properties were examined for the gel particles. The diameters and the extent of coagulation were different with the polymerization conditions. Relatively large specific areas and large swelling ratio with H2O were obtained, and these values were related with the polymerization conditions. By mixing the gel particles with gold nanoparticles in solutions, composite particles were formed, which were composed of gold nanoparticles adsorbed on the gel particles. Interaction between gold nanoparticles and reactive azo groups remained in the gel particles concerned for the formation of the composite particles.  相似文献   

18.
Aqueous dispersions of gold nanoparticles protected with a stimuli-sensitive diblock copolymer were studied as a function of pH and temperature. Poly(methacrylic acid)-block-poly(N-isopropylacrylamide), PMAA-b-PNIPAM, copolymer was synthesized using the RAFT technique. A one-pot method utilizing the dithiobenzoate functionalized polymer was used to prepare gold nanoparticles protected with PMAA-b-PNIPAM. The gold nanoparticles coated with block copolymers, with the PNIPAM block bound to the particle surface and PMAA as an outer block form stimuli-sensitive aggregates in water. The changes in the absorption maxima of the surface plasmon resonance, SPR, of the gold particles and in the size of the aggregates were investigated as a function of pH and temperature. pH was observed to affect the size of the aggregates, whereas the effect of temperature was moderate. However, a blue shift in the SPR was observed both with decreasing pH and increasing temperature. Whereas the PMAA blocks control the colloidal stability of the particles and their aggregates, the thermo-sensitive PNIPAM blocks have a noticeable effect on the polarity of the immediate surroundings of the particles.  相似文献   

19.
Cationic gold nanoparticles offer intriguing opportunities as drug carriers and building blocks for self‐assembled systems. Despite major progress on gold nanoparticle research in general, the synthesis of cationic gold particles larger than 5 nm remains a major challenge, although these species would give a significantly larger plasmonic response compared to smaller cationic gold nanoparticles. Herein we present the first reported synthesis of cationic gold nanoparticles with tunable sizes between 8–20 nm, prepared by a rapid two‐step phase‐transfer protocol starting from simple citrate‐capped particles. These cationic particles form ordered self‐assembled structures with negatively charged biological components through electrostatic interactions.  相似文献   

20.
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号