首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We are given a set of objects, each characterized by a weight and a fragility, and a large number of uncapacitated bins. Our aim is to find the minimum number of bins needed to pack all objects, in such a way that in each bin the sum of the object weights is less than or equal to the smallest fragility of an object in the bin. The problem is known in the literature as the Bin Packing Problem with Fragile Objects, and appears in the telecommunication field, when one has to assign cellular calls to available channels by ensuring that the total noise in a channel does not exceed the noise acceptance limit of a call.We propose a branch-and-bound and several branch-and-price algorithms for the exact solution of the problem, and improve their performance by the use of lower bounds and tailored optimization techniques. In addition we also develop algorithms for the optimal solution of the related knapsack problem with fragile objects. We conduct an extensive computational evaluation on the benchmark set of instances, and show that the proposed algorithms perform very well.  相似文献   

2.
We study a strip cutting problem that arises in the production of corrugated cardboard. In this context, rectangular items of different sizes are obtained by machines, called corrugators, that cut strips of large dimensions according to particular schemes containing at most two types of items. Because of buffer restrictions, these schemes have to be sequenced in such a way that, at any moment, at most two types of items are in production and not completed yet (sequencing constraint). We show that the problem of finding a set of schemes of minimum trim loss that satisfies an assigned demand for each item size is strongly NP-hard, even if the sequencing constraint is relaxed. Then, we present two heuristics for the problem with the sequencing constraint, both based on a graph characterization of the feasible solutions. The first heuristic is a two-phase procedure based on a mixed integer linear programming model. The second heuristic follows a completely combinatorial approach and consists of solving a suitable sequence of minimum cost matching problems. For both procedures, an upper bound on the number of schemes (setups) is found. Finally, a computational study comparing the quality of the heuristic solutions with respect to an LP lower bound is reported.  相似文献   

3.
We consider two types of orthogonal, oriented, rectangular, two-dimensional packing problems. The first is the strip packing problem, for which four new and improved level-packing algorithms are presented. Two of these algorithms guarantee a packing that may be disentangled by guillotine cuts. These are combined with a two-stage heuristic designed to find a solution to the variable-sized bin packing problem, where the aim is to pack all items into bins so as to minimise the packing area. This heuristic packs the levels of a solution to the strip packing problem into large bins and then attempts to repack the items in those bins into smaller bins in order to reduce wasted space. The results of the algorithms are compared to those of seven level-packing heuristics from the literature by means of a large number of strip-packing benchmark instances. It is found that the new algorithms are an improvement over known level-packing heuristics for the strip packing problem. The advancements made by the new and improved algorithms are limited in terms of utilised space when applied to the variable-sized bin packing problem. However, they do provide results faster than many existing algorithms.  相似文献   

4.
The three-dimensional finite bin packing problem (3BP) consists of determining the minimum number of large identical three-dimensional rectangular boxes, bins, that are required for allocating without overlapping a given set of three-dimensional rectangular items. The items are allocated into a bin with their edges always parallel or orthogonal to the bin edges. The problem is strongly NP-hard and finds many practical applications. We propose new lower bounds for the problem where the items have a fixed orientation and then we extend these bounds to the more general problem where for each item the subset of rotations by 90° allowed is specified. The proposed lower bounds have been evaluated on different test problems derived from the literature. Computational results show the effectiveness of the new lower bounds.  相似文献   

5.
6.
A method for determining an upper bound for the homogeneous case of a two-dimensional packing problem is presented in this paper. It is based on an analysis of the problem's structure and can be evaluated as the optimal solution of a non-convex minimization problem which can be transformed to a piecewise linear problem by using its special properties. Finally a comparative analysis of solution quality and time complexity is presented.
Zusammenfassung In dieser Arbeit wird ein Verfahren zur Bestimmung oberer Schranken für ein homogenes zweidimensionales Packproblem vorgestellt. Auf der Grundlage von Analysen der Problemstruktur kann man eine obere Schranke als optimale Lösung eines nichtkonvexen Minimierungsproblems ermitteln, das unter Ausnutzung spezieller Eigenschaften in ein stückweise lineares Problem transformiert werden kann. Den Abschluß dieser Arbeit bildet eine vergleichende Analyse von Lösungsqualität und Rechenzeitbedarf.
  相似文献   

7.
In this paper, we consider the online strip packing problem, in which a list of online rectangles has to be packed without overlap or rotation into one or more strips of width 1 and infinite height so as to minimize the required height of the packing. By analyzing a two-phase shelf algorithm, we derive a new upper bound 6.4786 on the competitive ratio for online one strip packing. This result improves the best known upper bound of 6.6623. We also extend this algorithm to online multiple strips packing and present some numeric upper bounds on their competitive ratios which are better than the previous bounds.  相似文献   

8.
New lower bounds for the three-dimensional orthogonal bin packing problem   总被引:1,自引:0,他引:1  
In this paper, we consider the three-dimensional orthogonal bin packing problem, which is a generalization of the well-known bin packing problem. We present new lower bounds for the problem from a combinatorial point of view and demonstrate that they theoretically dominate all previous results from the literature. The comparison is also done concerning asymptotic worst-case performance ratios. The new lower bounds can be more efficiently computed in polynomial time. In addition, we study the non-oriented model, which allows items to be rotated.  相似文献   

9.
In this paper, we study the circular packing problem (CPP) which consists of packing a set of non-identical circles of known radii into the smallest circle with no overlap of any pair of circles. To solve CPP, we propose a three-phase approximate algorithm. During its first phase, the algorithm successively packs the ordered set of circles. It searches for each circle’s “best” position given the positions of the already packed circles where the best position minimizes the radius of the current containing circle. During its second phase, the algorithm tries to reduce the radius of the containing circle by applying (i) an intensified search, based on a reduction search interval, and (ii) a diversified search, based on the application of a number of layout techniques. Finally, during its third phase, the algorithm introduces a restarting procedure that explores the neighborhood of the current solution in search for a better ordering of the circles. The performance of the proposed algorithm is evaluated on several problem instances taken from the literature.  相似文献   

10.
11.
This paper studies the circular packing problem (CPP) which consists of packing n non-identical circles Ci of known radius ri, i ∈ N = {1, … , n}, into the smallest containing circle C. The objective is to determine the coordinates (xiyi) of the center of Ci, i ∈ N, as well as the radius r and center (xy) of C. This problem, which is a variant of the two-dimensional open dimension problem, is solved using a two-step, dynamic, adaptive, local search algorithm. At each iteration, the algorithm identifies the set of potential “best local positions” of a circle Ci, i ∈ N, given the positions of the previously packed circles, and determines for each of these positions the coordinates and radius of the smallest containing circle. The “best local position” minimizes the radius of the current containing circle. That is, every time an additional circle is packed, both the center and the radius of the containing circle are dynamically updated, and the smallest containing circle is known. The experimental results reflect the good performance of the algorithm.  相似文献   

12.
We consider the problem of packing two-dimensional rectangles into the minimum number of unit squares, when 90° rotations are allowed. Our main contribution is a polynomial-time algorithm for packing rectangles into at most OPT bins whose sides have length (1+ε), for any positive ε. Additionally, we show near-optimal packing results for a number of related packing problems.  相似文献   

13.
We construct an exact algorithm for the Hamiltonian cycle problem in planar graphs with worst case time complexity , where c is some fixed constant that does not depend on the instance. Furthermore, we show that under the exponential time hypothesis, the time complexity cannot be improved to .  相似文献   

14.
In [J. Csirik, G.J. Woeginger, An on-line algorithm for multidimensional bin packing, Inform. Process. Lett. 63 (1997) 171-175] the authors study the asymptotic worst case ratio between the height of the strip needed to on-line pack a list of boxes by means of the Harmonic Shelf Algorithm and the height of the strip used by an optimal algorithm. In this note we analyze the effectiveness of the former algorithm in terms of the ratio between the unused area inside the strip and the total size of this strip, and we show that the Harmonic Shelf Algorithm is also capable of packing items so that the asymptotic worst case value of this ratio comes arbitrarily close to .  相似文献   

15.
We propose a new exact method for the well-known two-dimensional bin-packing problem. It is based on an iterative decomposition of the set of items into two disjoint subsets. We tested the efficiency of our method against benchmarks of the literature. Computational experiments confirm the efficiency of our method.  相似文献   

16.
Scheduling inspired models for two-dimensional packing problems   总被引:1,自引:0,他引:1  
We propose two exact algorithms for two-dimensional orthogonal packing problems whose main components are simple mixed-integer linear programming models. Based on the different forms of time representation in scheduling formulations, we extend the concept of multiple time grids into a second dimension and propose a hybrid discrete/continuous-space formulation. By relying on events to continuously locate the rectangles along the strip height, we aim to reduce the size of the resulting mathematical problem when compared to a pure discrete-space model, with hopes of achieving a better computational performance. Through the solution of a set of 29 test instances from the literature, we show that this was mostly accomplished, primarily because the associated search strategy can quickly find good feasible solutions prior to the optimum, which may be very important in real industrial environments. We also provide a comprehensive comparison to seven other conceptually different approaches that have solved the same strip packing problems.  相似文献   

17.
The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP) formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted, to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound (BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0, using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427]. It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427], and that the LR-based BNB method is more efficient for problems that resemble the aircraft rotation problems.  相似文献   

18.
The contribution presents a heuristic for the three-dimensional strip packing problem (3D-SPP) with rectangular pieces (boxes). The considered 3D-SPP can be formulated as follows: for a given set of boxes and a given longitudinal open container, determine an arrangement of all boxes within the container so that the required container length is minimized.  相似文献   

19.
This paper presents a hybrid placement strategy for the three-dimensional strip packing problem which involves packing a set of cuboids (‘boxes’) into a three-dimensional bin (parallelepiped) of fixed width and height but unconstrained length (the ‘container’). The goal is to pack all of the boxes into the container, minimising its resulting length. This problem has potential industry application in stock cutting (wood, polystyrene, etc. – minimising wastage) and also cargo loading, as well as other applications in areas such as multi-dimensional resource scheduling. In addition to the proposed strategy a number of test results on available literature benchmark problems are presented and analysed. The results of empirical testing of the algorithm show that it out-performs other methods from the literature, consistently in terms of speed and solution quality-producing 28 best known results from 35 test cases.  相似文献   

20.
The two-dimensional orthogonal packing problem (2OPP) consists in determining if a set of rectangles (items) can be packed into one rectangle of fixed size (bin). In this paper we propose two exact algorithms for solving this problem. The first algorithm is an improvement on a classical branch&bound method, whereas the second algorithm is based on a new relaxation of the problem. We also describe reduction procedures and lower bounds which can be used within enumerative methods. We report computational experiments for randomly generated benchmarks which demonstrate the efficiency of both methods: the second method is competitive compared to the best previous methods. It can be seen that our new relaxation allows an efficient detection of non-feasible instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号