首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two stage stochastic program with recourse is known to have numerous applications in financial planning, energy modeling, telecommunications systems etc. Notwithstanding its applicability, the two stage stochastic program is limited in its ability to incorporate a decision maker's attitudes towards risk. In this paper we present an extension via the inclusion of a recourse constraint. This results in a convex integrated chance constraint (ICC), which inherits the convexity properties of two stage programs. However, it also inherits some of the difficulties associated with the evaluation of recourse functions. This motivates our study of conditions that may be applicable to algorithms using statistical approximations of such ICC. We present a set of sufficient conditions that these approximations may satisfy in order to assure convergence. Our conditions are satisfied by a wide range of statistical approximations, and we demonstrate that these approximations can be generated within standard algorithmic procedures.This work was supported in part by Grant No. NSF-DDM-9114352 from the National Science Foundation.  相似文献   

2.
Separable sublinear functions are used to provide upper bounds on the recourse function of a stochastic program. The resulting problem's objective involves the inf-convolution of convex functions. A dual of this problem is formulated to obtain an implementable procedure to calculate the bound. Function evaluations for the resulting convex program only require a small number of single integrations in contrast with previous upper bounds that require a number of function evaluations that grows exponentially in the number of random variables. The sublinear bound can often be used when other suggested upper bounds are intractable. Computational results indicate that the sublinear approximation provides good, efficient bounds on the stochastic program objective value.This research has been partially supported by the National Science Foundation. The first author's work was also supported in part by Office of Naval Research Grant N00014-86-K-0628 and by the National Research Council under a Research Associateship at the Naval Postgraduate School, Monterey, California.  相似文献   

3.
The probability measureP O on multidimensional intervals in the extension of the Edmundson-Madansky upper bound for stochastically dependent random variables, derived recently in [7], is shown to be the uniquely determined extremal solution of a particular multivariate moment problem. A necessary and sufficient condition for the feasibility of this moment problem is derived, which is shown to coincide for the univariate moment problem with the simplex containing the moment space (see [15]).A first draft of this paper was written during the authors stay at the Mathematics Research Center, University of Wisconsin-Madison, during January 1986, with support by the National Science Foundation, Grant No. DCR-8502202; the generous support by these institutions is greatly appreciated.  相似文献   

4.
A parallel inexact Newton method with a line search is proposed for two-stage quadratic stochastic programs with recourse. A lattice rule is used for the numerical evaluation of multi-dimensional integrals, and a parallel iterative method is used to solve the quadratic programming subproblems. Although the objective only has a locally Lipschitz gradient, global convergence and local superlinear convergence of the method are established. Furthermore, the method provides an error estimate which does not require much extra computation. The performance of the method is illustrated on a CM5 parallel computer.This work was supported by the Australian Research Council and the numerical experiments were done on the Sydney Regional Centre for Parallel Computing CM5.  相似文献   

5.
Outer linearization methods for two-stage stochastic linear programs with recourse, such as the L-shaped algorithm, generally apply a single optimality cut on the nonlinear objective at each major iteration, while the multicut version of the algorithm allows for several cuts to be placed at once. In general, the L-shaped algorithm tends to have more major iterations than the multicut algorithm. However, the trade-offs in terms of computational time are problem dependent. This paper investigates the computational trade-offs of adjusting the level of optimality cut aggregation from single cut to pure multicut. Specifically, an adaptive multicut algorithm that dynamically adjusts the aggregation level of the optimality cuts in the master program, is presented and tested on standard large-scale instances from the literature. Computational results reveal that a cut aggregation level that is between the single cut and the multicut can result in substantial computational savings over the single cut method.  相似文献   

6.
Statistically motivated algorithms for the solution of stochastic programming problems typically suffer from their inability to recognize optimality of a given solution algorithmically. Thus, the quality of solutions provided by such methods is difficult to ascertain. In this paper, we develop methods for verification of optimality conditions within the framework of Stochastic Decomposition (SD) algorithms for two stage linear programs with recourse. Consistent with the stochastic nature of an SD algorithm, we provide termination criteria that are based on statistical verification of traditional (deterministic) optimality conditions. We propose the use of bootstrap methods to confirm the satisfaction of generalized Kuhn-Tucker conditions and conditions based on Lagrange duality. These methods are illustrated in the context of a power generation planning model, and the results are encouraging.This work was supported in part by Grant No. AFOSR-88-0076 from the Air Force Office of Scientific Research and Grant No. DDM-89-10046 from the National Science Foundation.  相似文献   

7.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

8.
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory’s fractional cutting plane algorithm or a branch-and-bound algorithm is applied.  相似文献   

9.
In this article a stochastic location-routing problem is defined and cast as a two-stage model. In a first stage the set of plants and a family of routes are determined; in a second stage a recourse action is applied to adapt these routes to the actual set of customers to visit, once they are known. A two-phase heuristic is developed. An initial feasible solution is built by solving a sequence of subproblems, and an improvement phase is then applied. A lower bound based on bounding separately different parts of the cost of any feasible solution is also developed. Computational results are reported.  相似文献   

10.
We derive a cutting plane decomposition method for stochastic programs with first-order dominance constraints induced by linear recourse models with continuous variables in the second stage.  相似文献   

11.
We consider a class of two-stage stochastic integer programs and their equivalent reformulation that uses the integer programming value functions in both stages. One class of solution methods in the literature is based on the idea of pre-computing and storing exact value functions, and then exploiting this information within a global branch-and-bound framework. Such methods are known to be very sensitive to the magnitude of feasible right-hand side values. In this note we propose a simple constraint-aggregation based approach that potentially alleviates this limitation.  相似文献   

12.
补偿型随机规划一般假定随机变量的概率分布具有完备信息, 但实际情况往往只能获得部分信息. 针对离散概率具有一类线性部分信息条件而建立了带有MaxEMin评判的两阶段随机规划模型, 借助二次规划和对偶分解方法得到了可行性切割和最优切割, 给出了基于L-型的求解算法, 并证明了算法的收敛性. 通过数值实验表明了算法的有效性.  相似文献   

13.
We propose a new scheme for computing lower bounds for the non-oriented bin-packing problem when the bin is a square. It leads to bounds that theoretically dominate previous results. Computational experiments show that the bounds are tight. We also discuss the case where the bin is not a square.  相似文献   

14.
For two-stage stochastic programs with integrality constraints in the second stage, we study continuity properties of the expected recourse as a function both of the first-stage policy and the integrating probability measure.Sufficient conditions for lower semicontinuity, continuity and Lipschitz continuity with respect to the first-stage policy are presented. Furthermore, joint continuity in the policy and the probability measure is established. This leads to conclusions on the stability of optimal values and optimal solutions to the two-stage stochastic program when subjecting the underlying probability measure to perturbations.This research is supported by the Schwerpunktprogramm Anwendungsbezogene Optimierung und Steuerung of the Deutsche Forschungsgemeinschaft.The main part of the paper was written while the author was an assistant at the Department of Mathematics at Humboldt University Berlin.  相似文献   

15.
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is contained in a finite set. Furthermore, we present a basic scheme to enumerate this set and suggest improvements to reduce the number of function evaluations needed.  相似文献   

16.
Ariyawansa and Zhu have recently introduced (two-stage) stochastic semidefinite programs (with recourse) (SSDPs) [1] and chance-constrained semidefinite programs (CCSDPs) [2] as paradigms for dealing with uncertainty in applications leading to semidefinite programs. Semidefinite programs have been the subject of intense research during the past 15 years, and one of the reasons for this research activity is the novelty and variety of applications of semidefinite programs. This research activity has produced, among other things, efficient interior point algorithms for semidefinite programs. Semidefinite programs however are defined using deterministic data while uncertainty is naturally present in applications. The definitions of SSDPs and CCSDPs in [1] and [2] were formulated with the expectation that they would enhance optimization modeling in applications that lead to semidefinite programs by providing ways to handle uncertainty in data. In this paper, we present results of our attempts to create SSDP and CCSDP models in four such applications. Our results are promising and we hope that the applications presented in this paper would encourage researchers to consider SSDP and CCSDP as new paradigms for stochastic optimization when they formulate optimization models.  相似文献   

17.
Inspired by the successful applications of the stochastic optimization with second order stochastic dominance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation (SA) method and the level function method to solve the penalized problem. Both methods are iterative: the former requires to calculate an approximate subgradient of the objective function of the penalized problem at each iterate while the latter requires to calculate a subgradient. Under some moderate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA method converges to an optimal solution of the true problem. As for the level function method, the convergence is deterministic and in some cases we are able to estimate the number of iterations for a given precision. Both methods are applied to portfolio optimization problem where the return functions are not necessarily linear and some numerical test results are reported.  相似文献   

18.
In this paper we derive estimates of the sample sizes required to solve a multistage stochastic programming problem with a given accuracy by the (conditional sampling) sample average approximation method. The presented analysis is self-contained and is based on a relatively elementary, one-dimensional, Cramér's Large Deviations Theorem.  相似文献   

19.
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. In addition to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号