首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a multi-period inventory/distribution planning problem (MPIDP) in a one-warehouse multiretailer distribution system where a fleet of heterogeneous vehicles delivers products from a warehouse to several retailers. The objective of the MPIDP is to minimise transportation costs for product delivery and inventory holding costs at retailers over the planning horizon. In this research, the problem is formulated as a mixed integer linear programme and solved by a Lagrangian relaxation approach. A subgradient optimisation method is employed to obtain lower bounds. We develop a Lagrangian heuristic algorithm to find a good feasible solution of the MPIDP. Computational experiments on randomly generated test problems showed that the suggested algorithm gave relatively good solutions in a reasonable amount of computation time.  相似文献   

2.
Facility location problems are often encountered in many areas such as distribution, transportation and telecommunication. We describe a new solution approach for the capacitated facility location problem in which each customer is served by a single facility. An important class of heuristic solution methods for these problems are Lagrangian heuristics which have been shown to produce high quality solutions and at the same time be quite robust. A primal heuristic, based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied, is incorporated into the Lagrangian heuristic. Finally, a branch-and-bound method, based on the Lagrangian heuristic is developed, and compared computationally to the commercial code CPLEX. The computational results indicate that the proposed method is very efficient.  相似文献   

3.
This paper presents exact and heuristic solution procedures for a multiproduct capacitated facility location (MPCFL) problem in which the demand for a number of different product families must be supplied from a set of facility sites, and each site offers a choice of facility types exhibiting different capacities. MPCFL generalizes both the uncapacitated (or simple) facility location (UFL) problem and the pure-integer capacitated facility location problem. We define a branch-and-bound algorithm for MPCFL that utilizes bounds formed by a Lagrangian relaxation of MPCFL which decomposes the problem into UFL subproblems and easily solvable 0-1 knapsack subproblems. The UFL subproblems are solved by the dual-based procedure of Erlenkotter. We also present a subgradient optimization-Lagrangian relaxation-based heuristic for MPCFL. Computational experience with the algorithm and heuristic are reported. The MPCFL heuristic is seen to be extremely effective, generating solutions to the test problems that are on average within 2% of optimality, and the branch-and-bound algorithm is successful in solving all of the test problems to optimality.  相似文献   

4.
We introduce a distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a non-linear integer-programming problem. Model properties are outlined. A Lagrangian relaxation solution algorithm is proposed. By exploiting the structure of the problem we can find a low-order polynomial algorithm for the non-linear integer programming problem that must be solved in solving the Lagrangian relaxation subproblems. A number of heuristics are outlined for finding good feasible solutions. In addition, we describe two variable forcing rules that prove to be very effective at forcing candidate sites into and out of the solution. The algorithms are tested on problems with 88 and 150 retailers. Computation times are consistently below one minute and compare favorably with those of an earlier proposed set partitioning approach for this model (Shen, 2000; Shen, Coullard and Daskin, 2000). Finally, we discuss the sensitivity of the results to changes in key parameters including the fixed cost of placing orders. Significant reductions in these costs might be expected from e-commerce technologies. The model suggests that as these costs decrease it is optimal to locate additional facilities.  相似文献   

5.
The inherent uncertainty in supply chain systems compels managers to be more perceptive to the stochastic nature of the systems' major parameters, such as suppliers' reliability, retailers' demands, and facility production capacities. To deal with the uncertainty inherent to the parameters of the stochastic supply chain optimization problems and to determine optimal or close to optimal policies, many approximate deterministic equivalent models are proposed. In this paper, we consider the stochastic periodic inventory routing problem modeled as chance‐constrained optimization problem. We then propose a safety stock‐based deterministic optimization model to determine near‐optimal solutions to this chance‐constrained optimization problem. We investigate the issue of adequately setting safety stocks at the supplier's warehouse and at the retailers so that the promised service levels to the retailers are guaranteed, while distribution costs as well as inventory throughout the system are optimized. The proposed deterministic models strive to optimize the safety stock levels in line with the planned service levels at the retailers. Different safety stock models are investigated and analyzed, and the results are illustrated on two comprehensively worked out cases. We conclude this analysis with some insights on how safety stocks are to be determined, allocated, and coordinated in stochastic periodic inventory routing problem. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
In a multiperiod dynamic network flow problem, we model uncertain arc capacities using scenario aggregation. This model is so large that it may be difficult to obtain optimal integer or even continuous solutions. We develop a Lagrangian decomposition method based on the structure recently introduced in G.D. Glockner and G.L. Nemhauser, Operations Research, vol. 48, pp. 233–242, 2000. Our algorithm produces a near-optimal primal integral solution and an optimum solution to the Lagrangian dual. The dual is initialized using marginal values from a primal heuristic. Then, primal and dual solutions are improved in alternation. The algorithm greatly reduces computation time and memory use for real-world instances derived from an air traffic control model.  相似文献   

7.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   

8.
Facility location models are applicable to problems in many diverse areas, such as distribution systems and communication networks. In capacitated facility location problems, a number of facilities with given capacities must be chosen from among a set of possible facility locations and then customers assigned to them. We describe a Lagrangian relaxation heuristic algorithm for capacitated problems in which each customer is served by a single facility. By relaxing the capacity constraints, the uncapacitated facility location problem is obtained as a subproblem and solved by the well-known dual ascent algorithm. The Lagrangian relaxations are complemented by an add heuristic, which is used to obtain an initial feasible solution. Further, a final adjustment heuristic is used to attempt to improve the best solution generated by the relaxations. Computational results are reported on examples generated from the Kuehn and Hamburger test problems.  相似文献   

9.
Most distribution network design models considered to date have focused on minimizing fixed costs of facility location and transportation costs. Measures of customer satisfaction driven by the operational dynamics such as lead times have seldom been considered. We consider the design of an outbound supply chain network considering lead times, location of distribution facilities and choice of transportation mode. We present a Lagrangian heuristic that gives excellent solution quality in reasonable computational time. Scenario analyses are conducted on industrial data using this algorithm to observe how the supply chain behaves under different parameter values.  相似文献   

10.
We consider discrete competitive facility location problems in this paper. Such problems could be viewed as a search of nodes in a network, composed of candidate and customer demand nodes, which connections correspond to attractiveness between customers and facilities located at the candidate nodes. The number of customers is usually very large. For some models of customer behavior exact solution approaches could be used. However, for other models and/or when the size of problem is too high to solve exactly, heuristic algorithms may be used. The solution of discrete competitive facility location problems using genetic algorithms is considered in this paper. The new strategies for dynamic adjustment of some parameters of genetic algorithm, such as probabilities for the crossover and mutation operations are proposed and applied to improve the canonical genetic algorithm. The algorithm is also specially adopted to solve discrete competitive facility location problems by proposing a strategy for selection of the most promising values of the variables in the mutation procedure. The developed genetic algorithm is demonstrated by solving instances of competitive facility location problems for an entering firm.  相似文献   

11.
We propose a new genetic algorithm for a well-known facility location problem. The algorithm is relatively simple and it generates good solutions quickly. Evolution is facilitated by a greedy heuristic. Computational tests with a total of 80 problems from four different sources with 100 to 1,000 nodes indicate that the best solution generated by the algorithm is within 0.1% of the optimum for 85% of the problems. The coding effort and the computational effort required are minimal, making the algorithm a good choice for practical applications requiring quick solutions, or for upper-bound generation to speed up optimal algorithms.  相似文献   

12.
We consider a one-warehouse-multiple-retailer inventory system where the retailers face stochastic customer demand, modelled as compound Poisson processes. Deliveries from the central warehouse to groups of retailers are consolidated using a time based shipment consolidation policy. This means that replenishment orders have to wait until a vehicle departures, which increases the lead time for the retailers and therefore also the safety stock. Thus, a trade-off exists between expected shipment costs and holding costs. Our aim is to determine the shipment intervals and the required amount of safety stock for each retailer and the warehouse to minimize total cost, both for backorder costs and fill rate constraints. Previous work has focused on exact solutions which are computationally demanding and not applicable for larger real world problems. The focus of our present work is on the development of computationally attractive heuristics that can be applied in practice. A numerical study shows that the proposed heuristics perform well compared to the exact cost minimizing solutions. We also illustrate that the approaches are appropriate for solving real world problems using data from a large European company.  相似文献   

13.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

14.
This paper addresses a novel competitive facility location problem about a firm that intends to enter an existing decentralized supply chain comprised of three tiers of players with competition: manufacturers, retailers and consumers. It first proposes a variational inequality for the supply chain network equilibrium model with production capacity constraints, and then employs the logarithmic-quadratic proximal prediction–correction method as a solution algorithm. Based on this model, this paper develops a generic mathematical program with equilibrium constraints for the competitive facility location problem, which can simultaneously determine facility locations of the entering firm and the production levels of these facilities so as to optimize an objective. Subsequently, a hybrid genetic algorithm that incorporates with the logarithmic-quadratic proximal prediction–correction method is developed for solving the proposed mathematical program with an equilibrium constraint. Finally, this paper carries out some numerical examples to evaluate proposed models and solution algorithms.  相似文献   

15.
We study a multi-echelon joint inventory-location model that simultaneously determines the location of warehouses and inventory policies at the warehouses and retailers. The model is formulated as a nonlinear mixed-integer program, and is solved using a Lagrangian relaxation-based approach. The efficiency of the algorithm and benefits of integration are evaluated through a computational study.  相似文献   

16.
Stock Rationing in a Continuous Review Two-Echelon Inventory Model   总被引:1,自引:0,他引:1  
In this paper we consider a 1-warehouse, N-retailer inventory system where demand occurs at all locations. We introduce an inventory model which allows us to set different service levels for retailers and direct customer demand at the warehouse. For each retailer a critical level is defined, such that a retailer replenishment order is delivered from warehouse stock if and only if the stock level exceeds this critical level. It is assumed that retailer replenishment orders, which are not satisfied from warehouse stock, are delivered directly from the outside supplier, instead of being backlogged. We present an analytical upper bound on the total cost of the system, and develop a heuristic method to optimize the policy parameters. Numerical experiments indicate that our technique provides a very close approximation of the exact cost. Also, we show that differentiating among the retailers and direct customer demand can yield significant cost reductions.  相似文献   

17.
We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation bounds can be calculated by solving a set of single scenario subproblems and then solving a single knapsack problem. We also derive two new primal MIP formulations and demonstrate that for chance-constrained linear programs, the continuous relaxations of these formulations yield bounds equal to the proposed dual bounds. We propose a new heuristic method and two new exact algorithms based on these duals and formulations. The first exact algorithm applies to chance-constrained binary programs, and uses either of the proposed dual bounds in concert with cuts that eliminate solutions found by the subproblems. The second exact method is a branch-and-cut algorithm for solving either of the primal formulations. Our computational results indicate that the proposed dual bounds and heuristic solutions can be obtained efficiently, and the gaps between the best dual bounds and the heuristic solutions are small.  相似文献   

18.
We consider a multi-period multi-stop transportation planning problem (MPMSTP) in a one-warehouse multi-retailer distribution system where a fleet of homogeneous vehicles delivers products from a warehouse to retailers. The objective of the MPMSTP is to minimize the total transportation distance for product delivery over the planning horizon while satisfying demands of the retailers. We suggest two heuristic algorithms based on the column generation method and the simulated annealing algorithm. Computational experiments on randomly generated test problems showed that the suggested algorithms gave better solutions than an algorithm currently used in practice and algorithms modified from existing algorithms for vehicle routing problems.  相似文献   

19.
产品回收逆向物流网络设计问题的两阶段启发式算法   总被引:1,自引:0,他引:1  
针对产品回收逆向物流网络设计问题,设计了一种嵌套了模拟退火算法的两阶段启发式算法。第一阶段确定回收点的选址-分配-存储的联合决策;第二阶段确定回收中心的选址-运输的联合决策,两个阶段相互迭代,从而实现最优解的搜索。通过与遗传算法比较,证明了两阶段启发式算法是一种有效的算法。  相似文献   

20.
We consider a healthcare facility location problem in which there are two types of patients, low-income patients and middle- and high-income patients. The former can use only public facilities, while the latter can use both public facilities and private facilities. We focus on the problem of determining locations of public healthcare facilities to be established within a given budget and allocating the patients to the facilities for the objective of maximizing the number of served patients while considering preference of the patients for the public and private facilities. We present an integer programming formulation for the problem and develop a heuristic algorithm based on Lagrangian relaxation and subgradient optimization methods. Results of computational experiments on a number of problem instances show that the algorithm gives good solutions in a reasonable computation time and may be effectively used by the healthcare authorities of the government.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号