首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The paper presents a generalized regression technique centered on a superquantile (also called conditional value-at-risk) that is consistent with that coherent measure of risk and yields more conservatively fitted curves than classical least-squares and quantile regression. In contrast to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and in perfect analog to classical regression obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared for assessing the goodness of fit. The paper presents two numerical methods for solving the error minimization problems and illustrates the methodology in several numerical examples in the areas of uncertainty quantification, reliability engineering, and financial risk management.  相似文献   

2.
We consider optimization problems for minimizing conditional value-at-risk (CVaR) from a computational point of view, with an emphasis on financial applications. As a general solution approach, we suggest to reformulate these CVaR optimization problems as two-stage recourse problems of stochastic programming. Specializing the L-shaped method leads to a new algorithm for minimizing conditional value-at-risk. We implemented the algorithm as the solver CVaRMin. For illustrating the performance of this algorithm, we present some comparative computational results with two kinds of test problems. Firstly, we consider portfolio optimization problems with 5 random variables. Such problems involving conditional value at risk play an important role in financial risk management. Therefore, besides testing the performance of the proposed algorithm, we also present computational results of interest in finance. Secondly, with the explicit aim of testing algorithm performance, we also present comparative computational results with randomly generated test problems involving 50 random variables. In all our tests, the experimental solver, based on the new approach, outperformed by at least one order of magnitude all general-purpose solvers, with an accuracy of solution being in the same range as that with the LP solvers. János Mayer: Financial support by the national center of competence in research "Financial Valuation and Risk Management" is gratefully acknowledged. The national centers in research are managed by the Swiss National Science Foundation on behalf of the federal authorities.  相似文献   

3.
We consider a class of risk-averse submodular maximization problems (RASM) where the objective is the conditional value-at-risk (CVaR) of a random nondecreasing submodular function at a given risk level. We propose valid inequalities and an exact general method for solving RASM under the assumption that we have an efficient oracle that computes the CVaR of the random function. We demonstrate the proposed method on a stochastic set covering problem that admits an efficient CVaR oracle for the random coverage function.  相似文献   

4.
Robust optimization, one of the most popular topics in the field of optimization and control since the late 1990s, deals with an optimization problem involving uncertain parameters. In this paper, we consider the relative robust conditional value-at-risk portfolio selection problem where the underlying probability distribution of portfolio return is only known to belong to a certain set. Our approach not only takes into account the worst-case scenarios of the uncertain distribution, but also pays attention to the best possible decision with respect to each realization of the distribution. We also illustrate how to construct a robust portfolio with multiple experts (priors) by solving a sequence of linear programs or a second-order cone program.  相似文献   

5.
In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on robust optimization, a tractable combinatorial algorithm is proposed to solve approximately CKP. For two specific classes of uncertain knapsack problems, it is proved to solve CKP at optimality.  相似文献   

6.
Transductive learning involves the construction and application of prediction models to classify a fixed set of decision objects into discrete groups. It is a special case of classification analysis with important applications in web-mining, corporate planning and other areas. This paper proposes a novel transductive classifier that is based on the philosophy of discrete support vector machines. We formalize the task to estimate the class labels of decision objects as a mixed integer program. A memetic algorithm is developed to solve the mathematical program and to construct a transductive support vector machine classifier, respectively. Empirical experiments on synthetic and real-world data evidence the effectiveness of the new approach and demonstrate that it identifies high quality solutions in short time. Furthermore, the results suggest that the class predictions following from the memetic algorithm are significantly more accurate than the predictions of a CPLEX-based reference classifier. Comparisons to other transductive and inductive classifiers provide further support for our approach and suggest that it performs competitive with respect to several benchmarks.  相似文献   

7.
In this survey paper, we present advances achieved during the last years in the development and use of OR, in particular, optimization methods in the new gene-environment and eco-finance networks, based on usually finite data series, with an emphasis on uncertainty in them and in the interactions of the model items. Indeed, our networks represent models in the form of time-continuous and time-discrete dynamics, whose unknown parameters we estimate under constraints on complexity and regularization by various kinds of optimization techniques, ranging from linear, mixed-integer, spline, semi-infinite and robust optimization to conic, e.g., semi-definite programming. We present different kinds of uncertainties and a new time-discretization technique, address aspects of data preprocessing and of stability, related aspects from game theory and financial mathematics, we work out structural frontiers and discuss chances for future research and OR application in our real world.  相似文献   

8.
Narasimhan incorporated fuzzy set theory within goal programming formulation in 1980. Since then numerous research has been carried out in this field. One of the well-known models for solving fuzzy goal programming problems was proposed by Hannan in 1981. In this paper the conventional MINMAX approach in goal programming is applied to solve fuzzy goal programming problems. It is proved that the proposed model is an extension to Hannan model that deals with unbalanced triangular linear membership functions. In addition, it is shown that the new model is equivalent to a model proposed in 1991 by Yang et al. Moreover, a weighted model of the new approach is introduced and is compared with Kim and Whang’s model presented in 1998. A numerical example is given to demonstrate the validity and strengths of the new models.  相似文献   

9.
In this paper we solve a collection of optimal path planning problems using a method based on measure theory. First we consider the problem as an optimization problem and then we convert it to an optimal control problem by defining some artificial control functions. Then we perform a metamorphosis in the space of problem. In fact we define an injection between the set of admissible pairs, containing the control vector function and a collision-free path defined on free space and the space of positive Radon measures. By properties of this kind of measures we obtain a linear programming problem that its solution gives rise to constructing approximate optimal trajectory of the original problem. Some numerical examples are proposed.  相似文献   

10.
The availability of abundant data posts a challenge to integrate static customer data and longitudinal behavioral data to improve performance in customer churn prediction. Usually, longitudinal behavioral data are transformed into static data before being included in a prediction model. In this study, a framework with ensemble techniques is presented for customer churn prediction directly using longitudinal behavioral data. A novel approach called the hierarchical multiple kernel support vector machine (H-MK-SVM) is formulated. A three phase training algorithm for the H-MK-SVM is developed, implemented and tested. The H-MK-SVM constructs a classification function by estimating the coefficients of both static and longitudinal behavioral variables in the training process without transformation of the longitudinal behavioral data. The training process of the H-MK-SVM is also a feature selection and time subsequence selection process because the sparse non-zero coefficients correspond to the variables selected. Computational experiments using three real-world databases were conducted. Computational results using multiple criteria measuring performance show that the H-MK-SVM directly using longitudinal behavioral data performs better than currently available classifiers.  相似文献   

11.
12.
This paper presents a goal programming model that allows for the flexible handling of the two group classification problem. The goal programming model is based around the concepts of non-standard preference functions and penalty function modelling. An extension to a generalised distance metric case is given. The inclusion of multiple levels of classification based upon different levels of certainty is incorporated into the model. The model is tested on a real-life data set pertaining to cinema-going attendance and conclusions are drawn both in the context of the methodology and of the application.  相似文献   

13.
The risks and uncertainties inherent in most enterprise resources planning (ERP) investment projects are vast. Decision making in multistage ERP projects investment is also complex, due mainly to the uncertainties involved and the various managerial and/or physical constraints to be enforced. This paper tackles the problem using a real-option analysis framework, and applies multistage stochastic integer programming in formulating an analytical model whose solution will yield optimum or near-optimum investment decisions for ERP projects. Traditionally, such decision problems were tackled using lattice simulation or finite difference methods to compute the value of simple real options. However, these approaches are incapable of dealing with the more complex compound real options, and their use is thus limited to simple real-option analysis. Multistage stochastic integer programming is particularly suitable for sequential decision making under uncertainty, and is used in this paper and to find near-optimal strategies for complex decision problems. Compared with the traditional approaches, multistage stochastic integer programming is a much more powerful tool in evaluating such compound real options. This paper describes the proposed real-option analysis model and uses an example case study to demonstrate the effectiveness of the proposed approach.  相似文献   

14.
This article studies the influence of risk on farms’ technical efficiency levels. The analysis extends the order-m efficiency scores approach proposed by Daraio and Simar (2005) to the state-contingent framework. The empirical application focuses on cross section data of Catalan specialized crop farms from the year 2011. Results suggest that accounting for production risks increases the technical performance. A 10% increase in output risk will result in a 2.5% increase in average firm technical performance.  相似文献   

15.
This paper proposes a dual-response forwarding approach for renting air containers and simultaneously determining how cargoes are distributed into the containers under uncertain information. Containers have to be booked in advance to obtain a discount rental rate from airlines, as urgent requirement or cancellation of containers on the day of shipping will incur a heavy penalty. We firstly formulate a mixed 0-1 integer model to determine the booking types and quantities of containers for the deterministic problem under accurate information. We then formulate a stochastic mixed 0-1 model to structure a dual-response forwarding system for the uncertain problem where accurate information is not available when booking. The first-stage response is to determine the booking types and quantities of containers. The second-stage response is to prepare for different scenarios that might occur on the day of shipping, including the types and quantities of containers required or returned for each scenario, and also the corresponding cargo loading plan. Computational results show that the stochastic model can provide a cost-efficient, flexible and responsive cargo forwarding system.  相似文献   

16.
Kim and Whang use a tolerance approach for solving fuzzy goal programming problems with unbalanced membership functions [J.S. Kim, K. Whang, A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function, European Journal of Operational Research 107 (1998) 614–624]. In this note it is shown that some results in that article are incorrect. The necessary corrections are proposed.  相似文献   

17.
This paper develops a mathematical model for project time compression problems in CPM/PERT type networks. It is noted this formulation of the problem will be an adequate approximation for solving the time compression problem with any continuous and non-increasing time-cost curve. The kind of this model is Mixed Integer Linear Program (MILP) with zero-one variables, and the Benders' decomposition procedure for analyzing this model has been developed. Then this paper proposes a new approach based on the surrogating method for solving these problems. In addition, the required computer programs have been prepared by the author to execute the algorithm. An illustrative example solved by the new algorithm, and two methods are compared by several numerical examples. Computational experience with these data shows the superiority of the new approach.  相似文献   

18.
This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号