首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Mathematical Modelling》1982,3(5):391-405
This paper presents a conceptual and mathematical model of the process of satisficing decision making under multiple objectives in which the information about decision maker's preferences is expressed in the form of aspiration levels. The mathematical concept of a value (utility) function is modified to describe satisficing behavior; the modified value function (achievement scalarizing function) should possess the properties of order preservation and order approximation. It is shown that the mathematical basis formed using aspiration levels and achievement scalarizing functions can be used not only for satisficing decision making but also for Pareto optimization, and thus provides an alternative to approaches based on weighting coefficients or typical value functions. This mathematical basis, which can also be regarded as a generalization of the goal programming approach in multiobjective optimization, suggests pragmatic approaches to many problems in multiobjective analysis.  相似文献   

2.
Synchronous approach in interactive multiobjective optimization   总被引:8,自引:0,他引:8  
We introduce a new approach in the methodology development for interactive multiobjective optimization. The presentation is given in the context of the interactive NIMBUS method, where the solution process is based on the classification of objective functions. The idea is to formulate several scalarizing functions, all using the same preference information of the decision maker. Thus, opposed to fixing one scalarizing function (as is done in most methods), we utilize several scalarizing functions in a synchronous way. This means that we as method developers do not make the choice between different scalarizing functions but calculate the results of different scalarizing functions and leave the final decision to the expert, the decision maker. Simultaneously, (s)he obtains a better view of the solutions corresponding to her/his preferences expressed once during each iteration.In this paper, we describe a synchronous variant of the NIMBUS method. In addition, we introduce a new version of its implementation WWW-NIMBUS operating on the Internet. WWW-NIMBUS is a software system capable of solving even computationally demanding nonlinear problems. The new version of WWW-NIMBUS can handle versatile types of multiobjective optimization problems and includes new desirable features increasing its user-friendliness.  相似文献   

3.
The success of the reference point scheme within interactive techniques for multiobjective programming problems is unquestionable. However, so far, the different achievement scalarizing functions are, more or less, extensions of the Tchebychev distance. The reason for this is the ability of this function to determine efficient solutions and to support every efficient solution of the problem. For the same reasons, no additive scheme has yet been used in reference point-based interactive methods. In this paper, an additive achievement scalarizing function is proposed. Theoretical results prove that this function supports every efficient solution, and conditions are given under which the efficiency of each solution is guaranteed. Some examples and computational tests show the different behaviours of the Tchebychev and additive approaches, and an additive reference point interactive algorithm is proposed.  相似文献   

4.
In this paper, we propose two kinds of robustness concepts by virtue of the scalarization techniques (Benson’s method and elastic constraint method) in multiobjective optimization, which can be characterized as special cases of a general non-linear scalarizing approach. Moreover, we introduce both constrained and unconstrained multiobjective optimization problems and discuss their relations to scalar robust optimization problems. Particularly, optimal solutions of scalar robust optimization problems are weakly efficient solutions for the unconstrained multiobjective optimization problem, and these solutions are efficient under uniqueness assumptions. Two examples are employed to illustrate those results. Finally, the connections between robustness concepts and risk measures in investment decision problems are also revealed.  相似文献   

5.
Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about desired improvements in objective function values. NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure. An illustrative example demonstrates how this new method iterates.  相似文献   

6.
There are two types of criteria of solutions for the set-valued optimization problem, the vectorial criterion and set optimization criterion. The first criterion consists of looking for efficient points of set valued map and is called set-valued vector optimization problem. On the other hand, Kuroiwa–Tanaka–Ha started developing a new approach to set-valued optimization which is based on comparison among values of the set-valued map. In this paper, we treat the second type criterion and call set optimization problem. The aim of this paper is to investigate four types of nonlinear scalarizing functions for set valued maps and their relationships. These scalarizing functions are generalization of Tammer–Weidner’s scalarizing functions for vectors. As applications of the scalarizing functions for sets, we present nonconvex separation type theorems, Gordan’s type alternative theorems for set-valued map, optimality conditions for set optimization problem and Takahashi’s minimization theorems for set-valued map.  相似文献   

7.
The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.  相似文献   

8.
This paper presents a multiple reference point approach for multi-objective optimization problems of discrete and combinatorial nature. When approximating the Pareto Frontier, multiple reference points can be used instead of traditional techniques. These multiple reference points can easily be implemented in a parallel algorithmic framework. The reference points can be uniformly distributed within a region that covers the Pareto Frontier. An evolutionary algorithm is based on an achievement scalarizing function that does not impose any restrictions with respect to the location of the reference points in the objective space. Computational experiments are performed on a bi-objective flow-shop scheduling problem. Results, quality measures as well as a statistical analysis are reported in the paper.  相似文献   

9.
In multiobjective optimization methods, the multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions and such functions may be constructed in many ways. We compare both theoretically and numerically the performance of three classification-based scalarizing functions and pay attention to how well they obey the classification information. In particular, we devote special interest to the differences the scalarizing functions have in the computational cost of guaranteeing Pareto optimality. It turns out that scalarizing functions with or without so-called augmentation terms have significant differences in this respect. We also collect a set of mostly nonlinear benchmark test problems that we use in the numerical comparisons.  相似文献   

10.
A Post-Optimality Analysis Algorithm for Multi-Objective Optimization   总被引:2,自引:1,他引:1  
Algorithms for multi-objective optimization problems are designed to generate a single Pareto optimum (non-dominated solution) or a set of Pareto optima that reflect the preferences of the decision-maker. If a set of Pareto optima are generated, then it is useful for the decision-maker to be able to obtain a small set of preferred Pareto optima using an unbiased technique of filtering solutions. This suggests the need for an efficient selection procedure to identify such a preferred subset that reflects the preferences of the decision-maker with respect to the objective functions. Selection procedures typically use a value function or a scalarizing function to express preferences among objective functions. This paper introduces and analyzes the Greedy Reduction (GR) algorithm for obtaining subsets of Pareto optima from large solution sets in multi-objective optimization. Selection of these subsets is based on maximizing a scalarizing function of the vector of percentile ordinal rankings of the Pareto optima within the larger set. A proof of optimality of the GR algorithm that relies on the non-dominated property of the vector of percentile ordinal rankings is provided. The GR algorithm executes in linear time in the worst case. The GR algorithm is illustrated on sets of Pareto optima obtained from five interactive methods for multi-objective optimization and three non-linear multi-objective test problems. These results suggest that the GR algorithm provides an efficient way to identify subsets of preferred Pareto optima from larger sets.  相似文献   

11.
Recently, a general-purpose local-search heuristic method called extremal optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in numerical multiobjective optimization and proposes a new novel elitist (1 + λ) multiobjective algorithm, called multiobjective extremal optimization (MOEO). In order to extend EO to solve the multiobjective optimization problems, the Pareto dominance strategy is introduced to the fitness assignment of the proposed approach. We also present a new hybrid mutation operator that enhances the exploratory capabilities of our algorithm. The proposed approach is validated using five popular benchmark functions. The simulation results indicate that the proposed approach is highly competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOEO can be considered a good alternative to solve numerical multiobjective optimization problems.  相似文献   

12.
This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.  相似文献   

13.
F. Lara 《Optimization》2017,66(8):1259-1272
In this paper, we use generalized asymptotic functions and second-order asymptotic cones to develop a general existence result for the nonemptiness of the proper efficient solution set and a sufficient condition for the domination property in nonconvex multiobjective optimization problems. A new necessary condition for a point to be efficient or weakly efficient solution is given without any convexity assumption. We also provide a finer outer estimate for the asymptotic cone of the weakly efficient solution set in the quasiconvex case. Finally, we apply our results to the linear fractional multiobjective optimization problem.  相似文献   

14.
Solving the Tchebycheff program means optimizing a particular scalarizing function. When dealing with combinatorial problems, however, it is due to computational intractability often necessary to apply heuristics and settle for approximations to the optimal solution. The experiments in this paper suggest that for the multiobjective traveling salesman problem (moTSP) instances considered, heuristic optimization of the Tchebycheff program gives better results when using a substitute scalarizing function instead of the Tchebycheff based one to guide the local search path. Two families of substitute scalarizing functions are considered.  相似文献   

15.
We use asymptotic analysis to develop finer estimates for the efficient, weak efficient and proper efficient solution sets (and for their asymptotic cones) to convex/quasiconvex vector optimization problems. We also provide a new representation for the efficient solution set without any convexity assumption, and the estimates involve the minima of the linear scalarization of the original vector problem. Some new necessary conditions for a point to be efficient or weak efficient solution for general convex vector optimization problems, as well as for the nonconvex quadratic multiobjective optimization problem, are established.  相似文献   

16.
This paper presents a multiobjective evolutionary algorithm (MOEA) capable of handling stochastic objective functions. We extend a previously developed approach to solve multiple objective optimization problems in deterministic environments by incorporating a stochastic nondomination-based solution ranking procedure. In this study, concepts of stochastic dominance and significant dominance are introduced in order to better discriminate among competing solutions. The MOEA is applied to a number of published test problems to assess its robustness and to evaluate its performance relative to NSGA-II. Moreover, a new stopping criterion is proposed, which is based on the convergence velocity of any MOEA to the true Pareto optimal front, even if the exact location of the true front is unknown. This stopping criterion is especially useful in real-world problems, where finding an appropriate point to terminate the search is crucial.  相似文献   

17.
Analyzing the behavior and stability properties of a local optimum in an optimization problem, when small perturbations are added to the objective functions, are important considerations in optimization. The tilt stability of a local minimum in a scalar optimization problem is a well-studied concept in optimization which is a version of the Lipschitzian stability condition for a local minimum. In this paper, we define a new concept of stability pertinent to the study of multiobjective optimization problems. We prove that our new concept of stability is equivalent to tilt stability when scalar optimizations are available. We then use our new notions of stability to establish new necessary and sufficient conditions on when strict locally efficient solutions of a multiobjective optimization problem will have small changes when correspondingly small perturbations are added to the objective functions.  相似文献   

18.
Real-life decision problems are usually so complex they cannot be modeled with a single objective function, thus creating a need for clear and efficient techniques of handling multiple criteria to support the decision process. The most commonly used technique is Goal Programming. It is clear and appealing, but in the case of multiobjective optimization problems strongly criticized due to its noncompliance with the efficiency (Pareto-optimality) principle. On the other hand, the reference point method, although using similar control parameters as Goal Programming, always generates efficient solutions. In this paper, we show how the reference point method can be modeled within the Goal Programming methodology. It allows us to simplify implementations of the reference point method as well as shows how Goal Programming with relaxation of some traditional assumptions can be extended to a multiobjective optimization technique meeting the efficiency principle.  相似文献   

19.
This paper presents a multiobjective hybrid metaheuristic approach for an intelligent spatial zoning model in order to draw territory line for geographical or spatial zone for the purpose of space control. The model employs a Geographic Information System (GIS) and uses multiobjective combinatorial optimization techniques as its components. The proposed hybrid metaheuristic consists of the symbiosis between tabu search and scatter search method and it is used heuristically to generate non-dominated alternatives. The approach works with a set of current solution, which through manipulation of weights are optimized towards the non-dominated frontier while at the same time, seek to disperse over the frontier by a strategic oscillation concept. The general procedure and its algorithms are given as well as its implementation in the GIS environment. The computation has resulted in tremendous improvements in spatial zoning.  相似文献   

20.
In this article, an improved multiobjective chaotic interactive honey bee mating optimization (CIHBMO) is proposed to find the feasible optimal solution of the environmental/economic power dispatch problem with considering operational constraints of the generators. The three conflicting and noncommensurable: fuel cost, pollutant emissions, and system loss, should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multiobjective optimization problem, Pareto dominance concept is used to generate and sort the dominated and nondominated solutions. Also, fuzzy set theory is used to extract the best compromise solution. The propose method has been individually examined and applied to the standard Institute of Electrical and Electronics Engineers (IEEE) 30‐bus six generator, IEEE 180‐bus 14 generator and 40 generating unit (with valve point effect) test systems. The computational results reveal that the multiobjective CIHBMO algorithm has excellent convergence characteristics and is superior to other multiobjective optimization algorithms. Also, the result shows its great potential in handling the multiobjective problems in power systems. © 2014 Wiley Periodicals, Inc. Complexity 20: 47–62, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号