共查询到20条相似文献,搜索用时 60 毫秒
1.
基于氯过氧化物酶(CPO)对有机底物的手性识别功能,以CPO催化、叔丁基过氧化氢(TBHP)氧化甲基苄基硫醚合成手性R-苄基甲基亚砜,并在反应体系中引入多羟基化合物及季铵盐提高了目标产物的产率;反应主要受体系的pH值、氧化剂类型、反应时间、氧化剂/底物摩尔比,以及CPO用量等因素控制.引入多羟基化合物(甘油,PEG400,PEG600)时,R-苄基甲基亚砜的产率及ee值可分别达到65.5%和96.3%;而引入季铵盐(TEABr,TPABr,TBABr)时,其产率提高到78.2%~68.5%,ee值为95.4%~94%.UV-vis及荧光光谱分析表明反应体系中引入少量添加剂时CPO活性中心的血红素辅基暴露程度增加,底物容易接近,同时CPO的α-螺旋结构得以加强,从而有效改善了CPO的催化性能.与目前的合成方法相比,CPO酶促氧化制备手性R-苄基甲基亚砜高效、定向,酶用量极少,具有一定的产业化应用潜能. 相似文献
2.
研究了一种新型的羰基硫水解催化剂--稀土氧硫化物.考察了稀土系列氧化物硫化后的水解活性,发现其活性顺序为La≈Pr≈Nd≈Sm>Eu>Ce>Gd≈Ho>Dy>Er.XRD物相分析表明,各种稀土氧化物经水合及硫化后呈现出不同的物相变化特性,稀土氧硫化物是COS水解的活性物质.在氧硫化镧和氧硫化钕催化剂上研究了O2和SO2对羰基硫水解反应的影响,与传统的氧化铝基和氧化钛基水解催化剂相比,稀土氧硫化物显示出良好的抗氧化性能,而SO2对催化活性的影响是可逆的. 相似文献
3.
过氧化物酶在不对称氧化中的应用及氧化反应机理 总被引:6,自引:0,他引:6
过氧化物酶尤其是从Caldariomyces fumago中得到的氯过氧化物酶(GPO)能 催化多种底物的氧化和环氧化反应,表现出良好的立体选择性,近年在此领域内的 应用有若干重要的进展。由于CPO与细胞色素P450单加氧酶的相似性,它们的反应 机理与活性部位的研究也十分引人瞩目。 相似文献
4.
5.
以氯过氧化物酶(CPO)催化、H2O2氧化实现环己烯的环境友好转化,并通过溶剂工程调控和提高目标产物的产率.研究结果表明缓冲液体系(PBS)中引入咪唑/吡啶类离子液体(ILs)时,含量仅为1.5%(WILS/WPBS)时环己烯转化率即可提高31%.酶促反应动力学参数Km的减小以及Kcat和Kcat的增大表明引入离子液体时CPO对底物的亲和力及对底物识别的专一性得以改善,导致转化数增大,这是底物转化率有效提高的主要原因;此外,紫外,荧光及圆二色谱研究及产物组成分析表明离子液体在反应体系中具有多重功能:相转移催化、诱导酶分子结构优化及调节产物组成.由于反应基本在150 min内结束,酶用量极少,因此具有一定的产业化应用潜能. 相似文献
6.
手性环氧氯丙烷的CPO酶催化不对称合成 总被引:1,自引:0,他引:1
基于氯过氧化物酶(CPO)对有机底物的手性识别,以CPO催化、叔丁基过氧化氢(TBHP)氧化3-氯丙烯合成手性(R)-环氧氯丙烷,并引入多羟基化合物为添加剂提高了目标产物的产率及对映选择性.反应主要受体系的pH值以及CPO用量等因素控制.UV-vis及CD光谱分析表明,反应体系中引入多羟基化合物(甘油、PEG400、PEG600)时,CPO的血红素辅基暴露程度增加,底物容易接近活性中心,同时CPO的α-螺旋结构得以加强,从而有效提高了产物收率.CPO对底物的手性识别主要基于底物与酶催化中间体([Fe(IV)=O·]+)形成的复合物对酶的稳定性的影响.通过反应条件优化,(R)-环氧氯丙烷产率可达67.3%,对映选择性(ee)97.5%. 相似文献
7.
采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化酶用量对酚类物质去除率的影响。基于取代基数量和位置不同,去除率排序为2-氯酚<4-氯酚<2,4-二氯酚。另外,采用GC-MS研究了降解过程中的氧化产物。固定化酶的生化性质研究表明,固定化酶比游离酶具有更好的储存稳定性、pH稳定性和热稳定性。经过4次循环利用,固定化酶仍保留66%的活性,说明磁性纳米材料可以分离回收并重复利用,在污水处理领域具有应用前景。 相似文献
8.
9.
10.
将氯过氧化物酶(Chloroperoxidase,CPO)与双十二烷基溴化铵(DDAB)形成的类生物膜滴涂到Nation修饰的玻碳电极表面,再滴涂壳聚糖制得Chi/CPO-DDA B/Nafion/GC修饰电极.循环伏安曲线上可以观察到一对可逆的氧化还原电流峰,表明CPO与电极之间发生了直接的电子传递.该修饰电极可有效地催化O2还原为H2O2,产生的H2O2作为氧源与电极上的CPO结合进一步催化氧化肉桂醇,产物经气质联用色谱、以及红外光谱测试鉴定为肉桂醛,总的肉桂醛转化量达到80500mol/mol CPO,为高效专一获得末端醛提供了一种绿色合成方法.此外,还讨论了壳聚糖对提高修饰电极稳定性的作用. 相似文献
11.
13.
Peipei Wang Dr. Xiaofeng Han Prof. Dr. Xinqi Liu Dr. Richen Lin Prof. Dr. Yongzheng Chen Prof. Dr. Zhoutong Sun Prof. Dr. Wuyuan Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(61):e202201997
Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation–reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 % ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases. 相似文献
14.
Vladimír Nosek Dr. Jiří Míšek 《Angewandte Chemie (International ed. in English)》2018,57(31):9849-9852
The highly enantioselective enzyme methionine sulfoxide reductase A was combined with an oxaziridine‐type oxidant in a biphasic setup for the deracemization of chiral sulfoxides. Remarkably, high ee values were observed with a wide range of substrates, thus providing a practical route for the synthesis of enantiomerically pure sulfoxides. 相似文献
15.
16.
Roberto Fernández de la Pradilla Prof. Dr. Carlos Montero Dr. Mariola Tortosa Dr. Alma Viso Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(3):697-709
Highly diastereoselective Claisen rearrangements of acyclic allyl vinyl ethers bearing a chiral sulfoxide at C‐5 provide γ‐δ‐unsaturated aldehydes or ketones with up to two consecutive asymmetric centers in the molecule whilst preserving a useful vinyl sulfoxide. The reactivity of related vinyl sulfides and sulfones has also been examined in this work. 相似文献
17.
Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts 下载免费PDF全文
Dr. Takato Mitsudome Yusuke Takahashi Dr. Tomoo Mizugaki Prof. Dr. Koichiro Jitsukawa Prof. Dr. Kiyotomi Kaneda 《Angewandte Chemie (International ed. in English)》2014,53(32):8348-8351
The first demonstration of the hydrogenation of sulfoxides under atmospheric H2 pressure is reported. The highly efficient reaction is facilitated by a heterogeneous Ru nanoparticle catalyst. The mild reaction conditions enable the selective hydrogenation of a wide range of functionalized sulfoxides to the corresponding sulfides. The high redox ability of RuOx nanoparticles plays a key role in the hydrogenation. 相似文献
18.
Ying He Xiaoyun Ma Hai Feng Ji Xin Bing Zha Hongliang Jiang Ming Lu 《Phosphorus, sulfur, and silicon and the related elements》2013,188(7):822-830
Abstract A selective and efficient procedure for the oxidation of various sulfides with sodium tungstate dihydrate with 30% hydrogen peroxide in the presence of trioctylmethylammonium dihydrogen phosphate, respectively, to the corresponding sulfoxides and sulfones is reported. The oxidation reaction is carried out at –5 to 0 °C in the presence of hydroxypropyl-β-cyclodextrins for sulfoxides or at 50–60 °C for sulfones. The mild reaction conditions, easy workup, and good yields of the products are the major advantages of this method. 相似文献
19.
20.
DBDMH/NaNO2/O2 in water is a very efficient nonmetal transition system for catalytic oxidation of a variety of sulfides to the corresponding sulfoxides. The present catalytic system utilizes cheap and readily available agents as the catalysts and has the advantages of simple operations, easy separation of products, and high yields. 相似文献