首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 135 commercially available alkyl, cyano, phenyl, perfluorinated, polar embedded, enhanced polar selectivity (i.e., polar/hydrophilic endcapped), "Aqua type" and a variety of novel phases including some non-silica based stationary phases have been characterised in terms of their surface coverage, hydrophobic selectivity, shape selectivity, hydrogen bonding capacity and ion-exchange capacity at pH 2.7 and 7.6. Principal component analysis has been used to provide a simple graphical comparison of the differences/similarities between columns in the entire database and differing subsets such as "Aqua type"/enhanced polar selectivity phases. The PCA has been correlated to the phase's ability to analyse a range of hydrophilic bases.  相似文献   

2.
The development of new RP stationary phases containing polar groups has provided the chromatographer with a variety of stationary phase choices with differing selectivities. Polar endcapped and polar embedded group stationary phases have found use in solving a wide variety of separation problems, especially for the efficient separation of organic bases as well as separations necessitating the use of highly aqueous mobile phases. In this report, the retention thermodynamics of small, nonpolar solutes on traditional alkyl, polar endcapped, and polar embedded group stationary phases are compared. It is found that the nonpolar (methylene) transfer enthalpy is less favorable when polar embedded group phases are used, when compared to traditional or polar endcapped phases. In contrast, the transfer enthalpy of a phenyl group is found to be more favorable when a polar endcapped phase is used. In addition, the retention characteristics of these phases are compared using a set of solutes with differing solvatochromic parameters. Hydrogen-bond acids appear to have enhanced retention on polar embedded group phases, while hydrogen-bond bases have enhanced retention on polar endcapped phases.  相似文献   

3.
Compared to conventional C18 phases, polar‐modified phases have distinct differences with regards to chromatographic behavior. In the present study, ODS phases and polar‐modified phases were synthesized. The columns containing these new packings demonstrated satisfactory stability under both acidic (pH 1.5) and basic (pH 10) conditions. We evaluated the selectivity differences between alkyl and polar‐modified alkyl RP columns by using a range of neutral analytes. The polar‐modified alkyl phases showed excellent peak shapes for almost all compounds. We also compared the selectivity differences between them for separating nucleotides by using 100% aqueous mobile phase and tricyclic antidepressants in the intermediate pH mobile phases. The results demonstrated that polar‐modified phases display a significantly reduced hydrophobic nature and a significantly reduced silanol activity compared to the conventional C18 phases.  相似文献   

4.
The lyotropic polymorphism of a series of alkyl esters of acyl-L-carnitine has been studied by optical polarizing microscopy and X-ray diffraction. The different structures observed as a function of concentration and temperature have been characterized and their topology determined. As a result, two different phase sequence patterns have been detected: esters of normal alcohols bearing an alkyl chain of 6 or more carbon atoms in the acyl substituent display only a lamellar phase, while compounds which bear a relatively short alkyl chain (4 or less carbon atoms) show in addition non-lamellar type I hexagonal and cubic Q230 phases. From the analysis of the areas-per-molecule at the polar/apolar interface, the ability of the compounds investigated to form not only non-lamellar phases, but also direct micelles in isotropic solution has been related to the structural characteristics of the molecules. Curved, convex interfaces (in micelles and in non-lamellar phases) are possible only for the most polar acylcarnitines which have a relatively short alkyl chain, so that they behave like single chain surfactants; the most paraffinic derivatives, which have a relatively long alkyl chain, are effective double chain surfactants and then generate only quasi-planar interfaces.  相似文献   

5.
The effect of mobile phase modifier and temperature on gradient reequilibration is examined using three different stationary phases. The stationary phases studied are a traditional C18 phase, a polar endcapped C18 phase, and an alkyl phase with a polar embedded group. It was observed that both temperature and choice of mobile phase organic modifier had an effect on gradient reequilibration volume on both the traditional C18 stationary phase and the polar endcapped phase. On both these phases, at any given temperature, the reequilibration volume was generally smaller when methanol was used as the mobile phase modifier as compared to acetonitrile. As the temperature is increased from 10 to 50 degrees C, significant reductions in reequilibration volume were observed with both mobile phase modifiers. In contrast, neither temperature nor choice of modifier appeared to have much effect on reequilibration volume when the polar embedded group stationary phase was considered.  相似文献   

6.
Twenty-one commercially available phenyl type RPLC packing materials have been characterized in terms of their surface coverage, hydrophobic selectivity, shape selectivity, hydrogen bonding capacity, ion exchange capacity at pH 2.7 and 7.6 and aromatic selectivity (i.e. pi-pi interaction). The phases have been compared to their corresponding C-alkyl phases, three pentafluorophenyl phases and a series of experimental phenyl phases of known bonding chemistry. Principal component analysis has been used to provide a graphical comparison of the differences and similarities between the phases. The phase's aromatic selectivity was found to be dependent on the length of the alkyl spacer between the silicon atom and the phenyl ring.  相似文献   

7.
This review summarizes all papers that have appeared on the gas chromatography of amino acids (including the iodoamino acids) and their enantiomers in the period 1956-mid-1974. It has been found that the methods used for analysis of amino acids can be divided into three classes: (1) degradative procedures and techniques for converting the amino acid into another chemical compound; (2) procedures based on esterification of the carboxyl group and derivatization of the a-amino and other reactive groups in at least two steps; and (3) procedures based on a simultaneous derivatization of the carboxyl and a-amino groups in one reaction medium. For the treatment of the amino acid or its alkyl ester, three approaches can be distinguished for the two latter cases, i.e., acylation, alkylation (including silylation) and condensation. Of the procedures used for the resolution of optical antipodes, two methods are discussed, namely analysis of diastereoisomers on optically inactive stationary phases and separation of enantiomers on optically active stationary phases.  相似文献   

8.
Derivatives of 1,4-dihydropyridine (DHP) still play an important role in treatment of cardiovascular diseases. Typical degradation of the DHP ring is aromatization to pyridine ring which occurs both chemically and biochemically. It is, therefore, important to have a reliable and robust analytical method for separation of DHPs from their oxidized counterparts. Separation of closely-related substances possessing similar hydrophobicity, such as DHP and its oxidized form, can be challenging on conventional alkyl-bonded sorbents. In this study, an impact of reversed-phase (RP) liquid chromatography conditions on separation of the DHP/Ox pair has been investigated. Initially, a systematic study has been performed on 33 commercial RP columns with mobile phase acetonitrile/water for separation of foridone and its corresponding oxidized form. The retention and selectivity are discussed in view of the hydrophobic-subtraction model. Best separation was found replacing conventional C18 sorbents with ones containing an embedded polar group due to polar interactions. Similarly, application of cyano columns resulted in efficient separation of analytes. Organic modifier of mobile phase (methanol vs. acetonitrile) contributed significantly to separation of foridone from its oxidized counterpart. Separation of six chemically diverse DHPs from corresponding oxidized forms was studied on seven RP columns (traditional C18 sorbent, alkyl sorbent with polar embedded group, two different aromatic phases, pentafluorophenylpropyl sorbent and sorbent with straight chain perfluorohexyl ligand). Both acetonitrile and methanol were applied as organic modifier. It was found that application of alkyl sorbent with an embedded polar group (column Zorbax Bonus RP) or cyano sorbent (column ACE CN) yields clear separation of chemically diverse DHPs from their oxidized forms.  相似文献   

9.
Newer reversed-phase column technologies that incorporate polar groups either by an endcapping procedure or by embedding them into the stationary phase ligand have been receiving much attention in the literature for their robustness when highly aqueous conditions are used. We investigated their ability to accurately determine the chromatographic hydrophobicity value log k'w. The non-linear deviations of retention data as mobile phase conditions approach zero percent modifier are a large source of error when extrapolating to log k'w values using the linear solvent strength model. Here, we compare a conventional reversed-phase stationary phase with others that have incorporated either polar embedded or polar endcapped phases, along with a hybrid-based particle derivatized with a polar embedded ligand. Our results show that polar endcapped phases perform very similarly to the conventional phase and do not show any improved ability for determining log k'w, but polar embedded phases have reduced curvature in the data, and therefore result in less error in extrapolation. We also investigated the solubility parameter model and the [ET(30)] model for their extrapolation efficiency, and have concluded that the [ET(30)] model shows the least error when extrapolating the data.  相似文献   

10.
Four novel nonionic polar stationary phases were synthesised by anchoring first 2-mercaptoethanol and 1-thioglycerol, respectively, onto vinylised silica (ME and TG packings) followed by an on-phase oxidation with excess hydrogen peroxide in aqueous medium which yielded sulphoxide analogues of the embedded sulphide groups, i. e. oxidised 2-mercaptoethanol (MEO) and oxidised 1-thioglycerol (TGO) packings. Chromatographic characteristics of these stationary phases were evaluated comparatively to three commercial so-called 'diol' columns. U-shaped response curves of retention factors of adenosine and guanosine with hydro-organic eluents containing 5-95% v/v ACN as well as noticeable CH(2)-increment selectivity demonstrated multimodal separation capabilities of the developed amphiphilic materials, i. e. columns can be operated both in hydrophilic interaction chromatography (HILIC) and in RP mode. Although the selector ligands were physico-chemically related, considerably differing retention and selectivity patterns were observed in the HILIC mode. Thereby the introduction of additional hydroxyl groups in the chromatographic ligand resulted in selectivity increments that were different from those obtained by sulphur oxidation. For example, a set of five vitamins delivered five different elution orders with the overall seven columns. A close examination of HILIC separations of nucleobases and nucleosides on the developed packings revealed that (i) the amount of ACN in the eluent adopts a pivotal role in adjusting retention, (ii) the linearity of the relationship log (retention factor) versus log (volume fraction of water in the eluent) increases with phase polarity in the range of 5-40% v/v water, (iii) the slopes are higher with solutes having more polar interactive sites, (iv) the van't Hoff plots are linear (range 15-45 degrees C) with negative retention enthalpy values DeltaH (-4.5 to -14.5 kJ/mol) and (v) the -DeltaH values tend to be higher with more polar phases and more polar analytes. Based on these data the HILIC retention mechanism is described to be composed of both partitioning and adsorption processes. Distinct types of polar interactive sites in the chromatographic ligands may generate mixed-mode HILIC separation conditions that may additionally be superimposed by surface silanol contributions.  相似文献   

11.
The validity of the extended Tanaka column characterization procedure against the retention behavior of 101 analytes of widely differing properties chromatographed on five differing stationary phase chemistries has been established using a chemometric technique called principal component analysis (PCA). It was concluded that the simple and conveniently determined column characterization parameters covered the same space in the PCA loading plot as the retention times for the 101 differing analytes. This confirms that the ten column characterization parameters of the extended Tanaka protocol encode the same information as the retention times of the 101 analytes. Significant selectivity differences were observed between stationary phases and the mobile‐phase modifiers – MeOH and MeCN. PCA contribution plots served as a convenient way to highlight specific selectivity differences between stationary phases. logD values exhibited a poor correlation with retention indicating that retention in RP‐LC is not solely dictated by the analyte's hydrophobicity. The use of MeOH was found to generate greater selectivity differences with the five stationary phases than when MeCN is used.  相似文献   

12.
This paper describes the reversed-phase liquid chromatographic behaviour of the trypanocidal quaternary ammonium salt isometamidium chloride and its related compounds on a range of liquid chromatographic phases possessing alkyl and phenyl ligands on the same inert silica. In a parallel study with various extended polar selectivity phases which possessed different hydrophobic/silanophilic (hydrogen bonding) activity ratios, the chromatographic retention/selectivities of the quaternary ammonium salts was shown to be due to a co-operative mechanism between hydrophobic and silanophilic interactions. The highly aromatic and planar isometamidium compounds were found to be substantially retained on stationary phases containing aromatic functionality via strong π-π interactions. The chemometric approach of principal component analysis was used to characterise the chromatographic behaviour of the isometamidium compounds on the differing phases and to help identify the dominant retention mechanism(s). Two-dimensional (temperature/gradient) retention modelling was employed to develop and optimise a rapid liquid chromatography method for the separation of the six quaternary ammonium salts within 2.5 min which would be suitable for bioanalysis using liquid chromatography-mass spectrometry. This is the first reported systematic study of the relationship between stationary phase chemistries and retention/selectivity for a group of quaternary ammonium salts.  相似文献   

13.
T-shaped polyphilic triblock molecules, consisting of a rodlike p-terphenyl unit, a hydrophilic and flexible laterally attached oligo(oxyethylene) chain terminated by an 1-acylamino-1-deoxy-D-sorbitol unit, and two end-attached lipophilic alkyl chains, have been synthesized by palladium-catalyzed cross-coupling reactions as the key steps. The thermotropic liquid crystalline behavior of these compounds was investigated by polarized light microscopy, differential scanning calorimetry (DSC), and X-ray scattering. We investigated the mode of self-organization as a function of the length and position of the lateral polar chain and the length of the terminal alkyl chains. Depending on the size of the polar and lipophilic segments, a series of unusual liquid crystalline phases was detected. In three of these phases, the space is divided into three distinct periodic subspaces. In addition to a hexagonal channeled layer phase (ChL(hex)) consisting of layers that are penetrated by polar columns, there are also two honeycomb-like network structures formed by square (Col(squ)/p4mm) or pentagonal cylinders (Col(squ)/p4gm). The cylinder walls consist of the terphenyl units fused by columns of alkyl chains, and the interior contains the polar side chains. In addition, a hexagonal columnar phase was observed in which the polar columns are organized in a continuum of terphenyls and alkyl chains with an organization of the terphenyl cores tangentially around the columns with the long axis perpendicular to the columns. For one compound, a reversal of birefringence was observed, which is explained by a reorientation of the terphenyl cores. The addition of protic solvents induces lamellar phases.  相似文献   

14.
The study of several structural variations (the length, the degree of unsaturation and hydroxylation of the alkyl chains, the number and nature of osidic residues) helped understand the behaviour of neutral glycosphingolipids (GSLs) on porous graphitic carbon stationary phase (PGC). Atmospheric pressure photoionization mass spectrometry (APPI) and tandem mass spectrometry were used to perform the detection and the identification of molecular species in positive mode where [M+H](+) and [M-H(2)O+H](+) ions provided structural information on the fatty acid and the sphingoid base. The retention of GSLs increased with the hydrocarboneous volume of their alkyl chains and with the number of osidic residues in agreement with hydrophobic properties and polar retention effect of graphite, respectively. The presence of polar groups, such as OH-group or double bond within alkyl chains, decreased their retention. The coupling of chromatography on PGC with APPI tandem mass spectrometry detection appeared a powerful technique to discriminate isobaric molecules. Isobaric solutes differing by the position of two double bonds or by the repartition of hydrocarboneous skeleton were discriminated according to their chromatographic comportment or their mass spectrum, respectively. Among isobaric molecules, only few structures differing by the nature of osidic residue were not discriminated (i.e. glucosylceramide and galactosylceramide with similar ceramide skeleton were co-eluted and no difference in mass spectra was observed).  相似文献   

15.
There are various reversed‐phase stationary phases that offer significant differences in selectivity and retention. To investigate different reversed‐phase stationary phases (aqueous stable C18, biphenyl, pentafluorophenyl propyl, and polar‐embedded alkyl) in an automated fashion, commercial software and associated hardware for mobile phase and column selection were used in conjunction with liquid chromatography and a triple quadrupole mass spectrometer detector. A model analyte mixture was prepared using a combination of standards from varying classes of analytes (including drugs, drugs of abuse, amino acids, nicotine, and nicotine‐like compounds). Chromatographic results revealed diverse variations in selectivity and peak shape. Differences in the elution order of analytes on the polar‐embedded alkyl phase for several analytes showed distinct selectivity differences compared to the aqueous C18 phase. The electron‐rich pentafluorophenyl propyl phase showed unique selectivity toward protonated amines. The biphenyl phase provided further changes in selectivity relative to C18 with a methanolic phase, but it behaved very similarly to a C18 when an acetonitrile‐based mobile phase was evaluated. This study shows the value of rapid column screening as an alternative to excessive mobile phase variation to obtain suitable chromatographic settings for analyte separation.  相似文献   

16.
A systematic study of the behavior of several common mobile‐phase volume markers using traditional and polar‐group‐containing reversed‐phase stationary phases is presented. Examined mobile‐phase volume markers include two neutral molecules, uracil and thiourea, concentrated (0.10 M) and dilute (0.0001 M) KNO3, and D2O. Mobile‐phase volumes are examined over the entire reversed‐phase mobile‐phase range of 100% water to 100% methanol or acetonitrile. The behavior of these mobile‐phase volume markers is compared with a maximum theoretical value (i.e. the void volume), as determined by pycnometry. The data suggest that: (i) uracil begins to fail as a mobile‐phase volume marker in mobile phases below about 40% strong solvent for polar group containing phases; (ii) in nearly all cases, the mobile‐phase volume measured dynamically is smaller than the pycnometric void volume; (iii) a significant dependence of measured mobile‐phase volume on salt concentration is seen on the polar endcapped phase, which is not observed on the traditional and embedded polar group phase; and (iv) D2O does not work well as a mobile‐phase volume marker with polar‐group‐containing phases, possibly due to interaction with the stationary phase polar group.  相似文献   

17.
In the present study, a polar‐embedded reversed‐phase liquid chromatographic stationary phase that contained internal sulfone groups was prepared. The synthesis involved the “thiol‐ene” click chemistry between the vinyl functionalized silica and 1‐octadecanethiol, followed by the oxidization of sulfide to sulfone groups. The resulting material simultaneously possessed the alkyl chain, i.e. C18, and the internal sulfone groups. Elemental analysis demonstrates that the element contents of the C18/sulfone silica were C 8.94%, H 1.87% and S 0.66%. Chromatographic evaluations indicate that the C18/sulfone stationary phase exhibited a little less retention than the C18/sulfide one. A comparable chromatographic performance of neutral analytes was obtained on these two columns, but much better chromatographic performance in the case of basic and acid analytes was obtained on C18/sulfone stationary phase with additional features such as lower silanol activity, better stability (stable working conditions of pH 1.0–10.0), and better compatibility with 100% aqueous mobile phases. The batch‐to‐batch reproducibility was acceptable (the RSDs of retention times for the probes were no higher than 1.73%), demonstrating the suitability of the applied synthetic strategy for the new stationary phase. The C18/sulfone is a promising polar‐embedded RPLC stationary phase.  相似文献   

18.
A set of particulate silica-supported mixed-mode RP/weak anion-exchangers (RP/WAX) (obtained by bonding of N-undecenoylated 3-aminoquinuclidine, 3-aminotropane and 2-dimethylaminoethylamine as well as of N-butenoyl-(2S,4S,5R)-2-aminomethyl-5-[(2-octylthio)ethyl]-quinuclidine to thiol-modified silica) were chromatographically characterized in comparison to selected commercially available columns using two distinct isocratic elution modes, viz. an aqueous-rich RP-type elution mode (with 40% ACN and 60% buffer) as well as an organic solvent-rich hydrophilic interaction chromatography (HILIC)-type elution mode (95 and 90% ACN). The mixed-mode RP/WAX phases showed multimodal applicability, unlike a polar embedded RP material (Synergi Fusion RP), amino phases (Luna NH(2), BioBasic AX) or typical HILIC packings (ZIC-HILIC, TSKGel Amide-80). Principal component analysis (PCA) of the RP test data confirmed that the in-house developed RP/WAX columns as well as the Acclaim Mixed-Mode WAX-1 phase resemble each other in their chromatographic characteristics having slightly lower hydrophobic selectivity (alpha(CH2) of 1.5) than the tested Synergi Fusion RP (alpha(CH2) approximately 1.8). In contrast, a decrease in mixed-mode character due to lowered ion-exchange capacity and concomitantly increased RP-like behavior could be identified for other mixed-mode phases in the order of Obelisc R > Primesep B2 > Uptisphere MM3. PCA on HILIC data revealed that the RP/WAX phases behave dissimilar to TSKGel Amide-80, ZIC-HILIC and polysulfoethyl A under the chosen elution conditions. Hence, they may be regarded as complementary to these commercial stationary phases with applicability profiles for hydrophilic but also hydrophobic solutes.  相似文献   

19.
More and more polar stationary phases have become available for the separation of small polar compounds in the past decade as hydrophilic interaction chromatography (HILIC) continues to find applications in new fields (e.g., metabolomics and proteomics). Bare silica phases remain popular, especially in the bio-analytical area. A wide range of functional groups (e.g., amino, amide, diol, sulfobetaine, and triazole) have been employed as polar stationary phases for HILIC separation. This review provides a survey of the popular stationary phases commercially available and discusses the retention and selectivity characteristics of the polar stationary phases in HILIC. The purpose of the review is not to provide a comprehensive overview of literature reports, but rather focuses on findings that demonstrate retention and selectivity of the polar stationary phases in HILIC.  相似文献   

20.
Chromatographic effects of dedicated stationary and mobile phase variations in hydrophilic interaction chromatography (HILIC) were investigated using a set of nucleobases, nucleosides and deoxynucleosides as polar test solutes. Retention and selectivity profiles were comparatively mapped on four in-house developed silica materials modified with short alkyl chains (C4, C5) which carry hydroxyl functionalities (including diol motifs) as well as embedded sulphide or sulphoxide groups. These data were complemented by results obtained with two commercially available diol-type phases and a bare silica column. Besides elucidation of packing-related aspects this work concentrated specifically on extending aqueous HILIC (AQ-HILIC) to nonaqueous polar-organic elution conditions herein termed NA-HILIC. The exchange of the polar modifier water by various alcohols in ACN-rich mobile phases containing 5 mM ammonium acetate decreased the eluotropic strength of the resulting eluents. The gain in retention largely followed the order ethanol (EtOH)>methanol (MeOH)>1,2-ethanediol (Et(OH)2) and was accompanied by distinct effects on chromatographic selectivity. For example, on the most polar home-made packing the purine nucleoside selectivity guanosine/adenosine increased from 2.25 in the AQ-HILIC (kguanosine=8.3) to 7.33 (kguanosine=59) in the NA-HILIC mode when EtOH was employed as NA modifier while this value was 5.84 and 2.93 with MeOH and Et(OH)2, respectively (eluent: 5 mM ammonium acetate in ACN/modifier 90:10 v/v). Besides the type of protic modifier its percentage as well the retention and selectivity effects upon varying the ammonium acetate concentration and column temperature, respectively, were also investigated. Notable inter-column differences were found for all of these elution parameters. A mixed-mode retention model composed of partitioning and adsorption is proposed for both AQ- and NA-HILIC retention processes. The potential of (i) the implementation of novel polar bondings (such as ones containing sulphoxide functionalities) and (ii) the comprehensive exploitation of elution variables (type of protic modifiers, salt, etc.) for providing new selectivity increments to the separation of polar analytes in HILIC is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号