首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The cross-linking of multicomponent liquid crystals could be applied to the synthesis of nanometer-sized porous materials with a well-defined structure. In this work we demonstrate the template polymerization of columnar liquid crystals composed of the salts of a carboxylic acid and enantiopure 2-amino alcohols, and the application of one of them as a solid-state host. The salts of 3,4,5-tris(11-acryloyloxyundecyloxy)benzoic acid with (S)-2-amino-1-propanol and with (1R,2S)-norephedrine showed hexagonal and rectangular columnar liquid-crystalline structures, respectively. The successful application of gamma-ray-induced polymerization to the cross-linking of the liquid-crystalline salts, which was more advantageous than photoinduced polymerization from the standpoint of the retention of the original structural order in the gram-scale preparation of the polymers with a homogeneous columnar structure. The cross-linked polymer thus obtained from the gallic acid derivative and (1R,2S)-norephedrine was applicable as a heterogeneous host to capture amines from a guest solution through acid-amine interactions. When (1R,2S)-norephedrine was replaced with other amines through the guest-exchange reaction, a "template effect" was observed; the size and shape of the guests were determining factors for the efficiency of the guest exchange. The guest adsorption was found to proceed in an enantioselective manner when racemic 2-amino alcohols were used as guests, especially in the cases of substrates possessing a bulky substituent at the C1-position. The guest preference was again elucidated by the template effect, although the enantioselection mode was switched depending on the presence of a C2 substituent.  相似文献   

2.
A cross-linked polymer, prepared by the in situ polymerization of a thermotropic columnar liquid crystal, was found to work as a host with a flexible framework, which was reminiscent of intercalation hosts, such as clays, graphites, and coordination polymers. The structural order of the cross-linked polymer was reversibly switched by changing the amount or shape of a guest incorporated in the polymer.  相似文献   

3.
We investigated in situ the effects of monomer structures on the formation and evolution of liquid–crystal texture and crystallization during thin-film polymerization of a series of liquid–crystalline and crystalline polymers. The monomers used in this study consisted of 2,6-acetoxynaphthoic acid (ANA), p-acetoxybenzoic acid (ABA), acetoxy acetanilide (AAA), and isophthalic acid (IA). The polycondensation reactions were conducted on the heating stage of a polarizing microscope. The formation of liquid crystallinity was found to be strongly dependent on the straight-monomer structures of ANA and ABA and their percentages as well as the reaction temperature. For the ANA/AAA/IA and ABA/AAA/IA reaction systems, the critical straight-monomer content (ANA or ABA) existed to form the liquid–crystalline (LC) state. Interestingly, the critical content to form liquid crystallinity decreased with an increase in the reaction temperature. Above the critical content, the appearance of a defective LC phase and the annihilation of disclinations were observed during the polycondensation reactions. The number of defects decreased with increasing reaction time through annihilation. The annihilation rate increased whereas the defect density decreased with increasing straight-monomer content. For the same molar ratio, the reaction system containing ANA had a faster annihilation rate than that containing ABA. Below the critical content, crystalline polymers were formed. Nucleation and crystal growth were observed during the reactions, and the rate of crystal growth decreased with increasing ANA or ABA content. For the systems having the same molar ratio of ANA or ABA, the ANA/AAA/IA system had a higher tendency to yield the LC phase than the ABA/AAA/IA system because ANA has a longer mesogenic unit. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3084–3096, 1999  相似文献   

4.
By in situ thin‐film polymerization conducted on a heating stage of a polarizing microscope, we have investigated the effects of monomer structures on the formation of liquid crystallinity. Three polymerization systems studied are 2,6‐acetoxynaphthoic acid (ANA)/acetoxy acetanilide (AAA)/phthalic acid (PA), ANA/AAA/isophthalic acid (IA) and ANA/AAA/terephthalic acid (TA). In the three systems, PA, IA, and TA may create an ortho, a meta, and a para linkage, respectively. The formation of liquid crystallinity was found strongly dependent on the straightness and configuration of monomeric units. For ANA/AAA/PA and ANA/AAA/IA systems, there exists the critical ANA content to yield the liquid crystalline phase. Below this critical content, either amorphous phase forms or crystallization occurs during polymerization. Experimental data also indicate that defect density in the polymerization product reduces with increasing ANA content. Surprisingly, for the first time, we have observed that the ANA/AAA/PA system has a higher tendency to yield liquid crystallinity than the ANA/AAA/IA system. For the ANA/AAA/TA system, the polycondensation reaction is incomplete if the TA content is too high because of the low reactivity and the high melting point of TA. Polymerization of the ANA/AAA/TA system does not yield totally random copolymers because the liquid crystal phase appears before all TA crystals disappear during the polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2221–2231, 2000  相似文献   

5.
We have introduced a series of perfluoroalkyl dicarboxylic acids with different lengths of fluorinated aliphatic segments into the 2,6-acetoxynaphthoic acid (ANA) and acetoxy acetanilide (AAA) systems; and their effects on the evolution of liquid crystal texture and liquid crystallinity have been investigated. The perfluoroalkyl dicarboxylic acids are tetrafluorosuccinic acid (TFSA, n=2), hexafluoroglutaric acid (HFGA, n=3), perfluorosuberic acid (PFSUA, n=6) and perfluorosebacic acid (PFSEA, n=8). Computational results based on the 'RIS' Metropolis Monte Carlo method indicate that the ANA/AAA/perfluoroalkyl system may form thermotropic liquid crystalline polymers (LCPs) because the calculated persistence ratios are greater than 6.42. Computational results also predict that the systems containing even-numbered perfluoroalkyl acids have greater persistence length and molar stiffness than that containing odd-numbered acids. Experiments were carried out using the in situ thin film polymerization technique under a polarizing optical microscope. We observed that systems containing short aliphatic units (n=2, 3) tend to remain in the LC phase, while systems containing a long aliphatic spacer (n=8) tend to crystallize during the late stage of the polycondensation reaction. The liquid crystal domain formed in the early stage has a disclination strength S of +1. Ternary phase diagrams were plotted to show the relationship among monomer structure, composition, anisotropic and crystalline phases. FTIR results confirm the formation of LCPs.  相似文献   

6.
For a complementary hydrogen‐bonded complex, when every hydrogen‐bond acceptor is on one side and every hydrogen‐bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA–DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen‐bonded sequences. The easily synthesized and further derivatized AAA–DDD system is very desirable for hydrogen‐bonded functional materials. In this case, AAA and DDD, starting from 4‐methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×107 M ?1. The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA–DDD triply hydrogen bonded have also been developed. This work may make AAA–DDD triply hydrogen‐bonded sequences easily accessible for stimuli‐responsive materials.  相似文献   

7.
The radical polymerization and copolymerization of salts of unsaturated carboxylic acids were used for the production of metal-containing polymers. The kinetic peculiarities and copolymerization parameters were estimated. The synthesis and structure of transition metal acrylates, maleates, fumarates, and itaconates are discussed. The influence of the metal atom on salt reactivities and reaction rates is observed.  相似文献   

8.
Polymers containing thermolabile groups were synthesized by various cationic polymerization initiation mechanisms, namely; oxo–carbenium, promoted cationic and activated monomer polymerization. These polymers used in a subsequent blocking step in which azo groups were decomposed and converted into initiating centres from which blocks were grown by means of free radical polymerization. This procedure was applied to specific systems in which cationic polymerizable monomers are tetrahydrofuran (THF), cyclohexene oxide (CHO) and epichlorohydrin (ECH), respectively, and the free radical polymerizable monomer is styrene (St).  相似文献   

9.
Polymerization of linear methyl ω-epoxyalkanoates of C-3 to C-10 carboxylic acids (0 to 7 methylene groups between oxirane ring and carbomethoxy group) was accomplished with a triethylaluminum/water/acetylacetone (1.0/0.5/1.0) initiator system to yield polymers of high molecular weight, apparently via a coordinative anionic mechanism. The rate of polymerization increased as the number of methylene groups between the oxirane ring and the carbomethoxy group increased, up to three methylene groups. When more than three methylene groups separate the polymerizable oxirane group and the carbomethoxy group, the rate of polymerization becomes essentially constant. The polymers were characterized by their infrared and 13C-NMR spectra, DSC, GPC, and inherent viscosity. The lower members of the series (ω-epoxyalkanoates of n < 3) gave polymers of lower molecular weight and wider-molecular-weight distribution (M w/M n > 2), while the higher members had molecular weight distributions between 1.5 and 2. The glass transition temperatures of the polymers also decreased from ?26°C for n = 1 to around ?50 to ?55°C for n ≥ 3.  相似文献   

10.
Enantioselective ester hydrolysis catalyzed by imprinted polymers   总被引:4,自引:0,他引:4  
Highly cross-linked network polymers prepared by molecular imprinting catalyzed enantioselectively the hydrolysis of N-tert-butoxycarbonyl phenylalanine-p-nitrophenyl ester (BOCPheONP). The templates were designed to allow incorporation of the key catalytic elements, found in the proteolytic enzyme chymotrypsin, into the polymer active sites. Three model systems were evaluated. These were constructed from a chiral phosphonate analogue of phenylalanine (series A, C) or L-phenylalanine (series B) attached by a labile ester linkage to an imidazole-containing vinyl monomer. Free radical copolymerization of the template with methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) gave a highly cross-linked network polymer. The templates could be liberated from the polymers by hydrolysis, giving catalytically active sites envisaged to contain an enantioselective binding site, a site complementary to a transition state like structure (series A, C), and a hydroxyl, imidazole, and carboxylic acid group at hydrogen bond distance. As predicted, the enantiomer of BOCPheONP complementary to the configuration of the template was preferentially hydrolyzed with D-selectivity for the series A polymers (kD/kL = 1.9) and L-selectivity for the series B polymers (kL/kD = 1.2). The maximum rate enhancement, when compared with a control polymer, prepared using a benzoyl-substituted imidazole monomer as template, was 2.5, and comparing with the imidazole monomer in solution, a maximum rate enhancement of 10 was observed. The catalytic activity was higher for polymers subjected to the nucleophilic treatment. This was explained by a higher site density and flexibility of the polymer matrix caused by this treatment. In a comparison of template rebinding to polymers imprinted with a template containing either a carboxylate (planar ground state structure) or a phosphonate (tetrahedral transition state like structure) functionality, it was observed that imprinted polymers are able to discriminate between a transition state like and a ground state structure for transesterification. However the influence of transition state stabilization on the observed rate enhancements remains obscure. Only at acidic pH's was catalysis observed, whereas at basic pH's the polymers inhibit the reaction. At a later stage, the catalytic activity of the polymers for nonactivated D- and L-phenylalanine ethyl esters was investigated. A rate enhancement of up to 3 was observed when compared to the blank. Most important, however, the polymers imprinted with a D template preferentially hydrolyzed the D-ethyl ester and exhibited saturation kinetics.  相似文献   

11.
p-Vinylphenylsulfonylmethyl isocyanide (1M) was synthesized starting with sodium p-styrenesulfinate via p-vinylphenylsulfonylmethylformamide (4M). Free-radical polymerization of 1M provided cross-linked insoluble polymers (1), whereas 4M provided soluble polymers, which could be converted to soluble polymer 1. Conversions of carbonyl compounds to nitriles and Schiff bases to 1,5-disubstituted imidazoles with both soluble and cross-linked polymers 1 as reagents proceeded almost as efficiently as with their low molecular weight analog. Reusability of polymer 1 was fairly good.  相似文献   

12.
Cyclodextrins were cross-linked with toluene 2,4-diisocyanate in dimethyl sufoxide in the presence of hydrophobic biomolecules as templates, and the imprinted polymers were applied to the stationary phases of high performance liquid chromatography. Molecular imprinting efficiently promoted the binding-affinity and substrate-selectivity towards the template molecule, compared with the control polymers prepared in their absence. When cholesterol (template molecule) was complexed with cyclodextrins prior to the polymerization, for example, the imprinted polymer retained cholesterol more strongly than other steroids. Upon the polymerization without a template molecule, the binding towards steroids was much weaker. Besides steroids, imprinting was effective for various hydrophobic and rigid template molecules. Since binding of the guest molecule was based on inclusion complex formation with cyclodextrins, separation could be achieved in the solvents containing water. These polymeric receptors are also applicable to selective recognition of biologically important molecules or removal of toxic molecules from aqueous media. Thus, imprinting of cyclodextrins is useful for the preparation of synthetic tailor-made receptors for various kinds of hydrophobic guest molecules.  相似文献   

13.
Molecular crowding is a new approach to promoting molecular imprinting more efficiently. In this work, this concept was applied to the preparation of low cross-linked imprinted polymers in the presence of an immobilised template for stabilizing binding sites and improving molecular recognition. An imprinted monolithic column was synthesized using a mixture of 2,4-diamino-6-methyl-1,3,5-triazine (template), 2,4-diamino-6-(methacryloyloxy) ethyl-1,3,5-triazine (polymerisable template), methacrylic acid, ethylene glycol dimethacrylate, and polystyrene (molecular crowding agent). Some polymerization factors, such as template-monomer molar ratio, the composition of the porogen and crosslinking density, on the imprinting effect of resulting MIP monolith were systematically investigated. The results indicated that the imprinted monolithic columns prepared in the presence of molecular crowding agent retained affinity and specificity for template even when prepared with a level of cross-linker as low as 9%. Moreover, a stoichiometric displacement model for retention was successfully applied to evaluate the interaction between the solute and the stationary phase. Compared with the low cross-linked MIP prepared by conventional polymerization, the molecular crowding-based low cross-linked monolithic MIPs showed higher selectivity. The results suggested that molecular crowding is a powerful strategy to increase the effect of molecular imprinting at a low level of crosslinker.  相似文献   

14.
This study concentrates on the production of covalent molecular imprint polymers (MIPs) as highly selective sorbents for nortriptyline (NOR), a representative tricyclic antidepressant (TCA). The functionalized template contains a polymerizable 4-vinylphenyl carbamate moiety used to bind the template molecule to the polymer matrix. Polymerization with a cross-linker followed by hydrolytic cleavage of the labile carbamate functionality leaves an MIP with selective binding sites capable of binding template through hydrogen bonding interactions. Demonstrated chromatographically through a "selection index", these MIPs showed high selectivity for the template molecule (NOR) among a library of structurally similar compounds. The recognition was found to correlate with structural similarity to the template compound. A direct comparison between covalent and non-covalent molecular imprinting strategies reveals a great deal of improvement in the peak shape of the retained compound resulting from covalent imprinting (evidenced by peak asymmetry factors A.).  相似文献   

15.
A new type of organic intercalation system using poly(muconic acid) and poly(sorbic acid) crystals as the host compounds is described. The layered polymer crystals as the host are derived from benzyl-, dodecyl-, or naphthylmethylammonium salts of (Z,Z)-muconic or (E,E)-sorbic acids by topochemical polymerization. The subsequent solid-state hydrolysis of the resulting ammonium polymer crystals provides the corresponding carboxylic acid polymer crystals. When alkylamines are reacted with poly(muconic acid) or poly(sorbic acid) crystals dispersed in methanol at room temperature for a few hours, the intercalation proceeds to give layered ammonium polymer crystals via solid-state reactions, in which the polymers maintain a layered structure throughout. The interplanar spacing value of the polymer crystals changes according to the size of the guest molecules; that is, it exactly depends on the carbon number of the alkylamines used for each reaction of poly(muconic acid) or poly(sorbic acid) crystals. The stacking structure of alkyl chains with a tilt in the intercalated alkylammonium layers exists irrespective of the chemical and crystal structures of the host polymers. The intercalation of higher alkylamines into poly(muconic acid) crystals proceeds fast and quantitatively, while the conversion is dependent on the reaction conditions such as the structure and amount of the amine and the reaction time during the intercalation with poly(sorbic acid) crystals, due to the difference in the repeating layered structures of these polymer crystals. Some functional amines are also used as the guest molecules for this organic intercalation system.  相似文献   

16.
A polymerizable methacryl unit was introduced at the focal moiety of the amide dendrons which have amide branches and alkyl periphery. Their dendronized polymers were also prepared by the radical polymerization of the methacryl units. The self-organization characteristics of dendrons and dendronized polymers were then investigated in both the organic and aqueous phases. The amide dendrons (1M and 2M) in which the focal carboxyl group was blocked with methacryl units did not form gel in organic media such as chloroform or THF, whereas amide dendrons with a free carboxyl group at the focal point form self-organized structures. In the aqueous phase, 1M and 2M formed spherical vesicular assemblies. The dendronized polymers with first and second generation dendrons, 1P and 2P, respectively, exhibited lamellar and columnar organization in toluene. In addition to hydrogen bonding between the dendritic amide branches and van der Waals interactions between the alkyl periphery, steric confinement of dendritic side groups along the polymer backbone played a key role in the packing process of the dendronized polymers. In aqueous phase, 1P and 2P showed spherical vesicular aggregates with persistent stability in the presence of Triton X-100.  相似文献   

17.
Two microporous biodegradable polyesters, i.e., PGA and PDLLA, were obtained by solid-state polymerization reaction from the sodium salts of the corresponding alpha-hydroxycarboxylic acids after washing out the by-product sodium chloride. The polymers were shaped by cold uniaxial pressing, by hot uniaxial pressing, and by extrusion at elevated temperature. Due to the special microporosity of the polymers, the introduction of drugs is possible at moderate temperature. The release kinetics of the model drug Phe and of the anti-tumor drug goserelin (an LH-RH agonist) from compacted polymer samples were fast (approx. 2 d). The release kinetics of goserelin were corrected for the decomposition of the drug. External coatings with PDLLA or PLLA obtained by immersion in polymer solution strongly slowed down the release kinetics in the case of the PDLLA coating, giving an almost linear release during 100 d. A coating with PLLA was unsuitable to slow down the release kinetics.  相似文献   

18.
The polymerization of acrylic and methacrylic esters of 2-allyphenol with different anionic, cationic and coordination catalysts was studied. The polymerization occurs exclusively or predominantly through (meth)acrylic C?C double bonds in all the studied cases. With anionic catalysts the allylic groups are not polymerizable and the polymers have linear structure. Polymerization with catalysts based on dialkylaluminum chloride (alone or associated with some metal salts) yields soluble or partially crosslinked polymers, depending on the reaction conditions. The crosslinking is due to the participation of allylic groups in the polymerization reactions. Copolymers of acrylic and methacrylic esters of 2-allylphenol with styrene, acrylonitrile, methyl methacrylate, N-vinylcarbazole and 1,3-pentadiene were synthesized by copolymerization in the presence of anionic catalysts and of systems based on dialkylaluminum chloride.  相似文献   

19.
A new superbase, the cyclic trimeric phosphazene base (CTPB), was prepared with high yield and purity. In the presence of alcohol, the CTPB serves as a highly efficient organocatalyst for ring‐opening polymerization of the “non‐polymerizable” γ‐butyrolactone to offer well‐defined poly(γ‐butyrolactone) with high conversions (up to 98 %) at −60 °C. The produced polymers have high molecular weights (up to 22.9 kg mol−1) and low polydispersity distributions (1.27–1.50). NMR analysis of initiation process and the structural analysis of resulting polymers by MALDI‐TOF suggest a mechanism involving an activating initiator which leads only to linear polymers with BnO/H chain ends.  相似文献   

20.
Low molecular weight linear poly(methyl acrylate), star and hyperbranched polymers were synthesized using atom transfer radical polymerization (ATRP) and end‐functionalized using radical addition reactions. By adding allyltri‐n‐butylstannane at the end of the polymerization of poly(methyl acrylate), the polymer was terminated by allyl groups. When at high conversions of the acrylate monomer, allyl alcohol or 1,2‐epoxy‐5‐hexene, monomers which are not polymerizable by ATRP, were added, alcohol and epoxy functionalities respectively were incorporated at the polymer chain end. Functionalization by radical addition reactions was demonstrated to be applicable to multi‐functional polymers such as hyperbranched and star polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号