首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.  相似文献   

2.
该文基于改进的含有外部输入项的准线性自回归(准ARX)径向基函数(RBF)网络模型和支持向量回归(SVR)算法,提出了一种非线性切换控制方法.改进的准ARX模型非线性部分采用RBF网络.控制系统设计过程分为三个部分:首先,利用聚类方法确定模型的非线性参数;然后,采用线性SVR算法来解决控制系统的鲁棒性问题;接下来,基于控制误差给出切换判定函数,确定切换律给出控制序列.最后通过数值仿真验证了该方法的有效性.  相似文献   

3.
针对一类具有不确定性、多重时延和状态未知的复杂非线性系统,把模糊T-S模型和RBF神经网络结合起来,提出了一种基于观测器的跟踪控制方案.首先,应用模糊T-S模型对非线性系统建模,设计观测器用来观测系统状态,并由线性矩阵不等式得到模糊模型的控制律;其次,构建了自适应RBF神经网络,应用自适应RBF神经网络作为补偿器来补偿建模误差和不确定非线性部分.证明了闭环系统满足期望的跟踪性能.示例仿真结果表明了该方案的有效性.  相似文献   

4.
In this paper, an output feedback model predictive tracking control method is proposed for constrained nonlinear systems, which are described by a slope bounded model. In order to solve the problem, we consider the finite horizon cost function for an off-set free tracking control of the system. For reference tracking, the steady state is calculated by solving by quadratic programming and a nonlinear estimator is designed to predict the state from output measurements. The optimized control input sequences are obtained by minimizing the upper bound of the cost function with a terminal weighting matrix. The cost monotonicity guarantees that tracking and estimation errors go to zero. The proposed control law can easily be obtained by solving a convex optimization problem satisfying several linear matrix inequalities. In order to show the effectiveness of the proposed method, a novel slope bounded nonlinear model-based predictive control method is applied to the set-point tracking problem of solid oxide fuel cell systems. Simulations are also given to demonstrate the tracking performance of the proposed method.  相似文献   

5.
针对一类非严格反馈的时滞非线性系统,研究了一类基于观测器的自适应神经网络控制问题.针对系统中存在未知状态变量的问题,设计了一个状态观测器.利用反步法和径向基神经网络的逼近特性,提出了一种自适应神经网络输出反馈控制方法.所设计的控制器保证了闭环系统中所有信号的半全局一致有界性.最后,通过仿真验证了所提控制方法的有效性.  相似文献   

6.
A new technique for the latent state estimation of a wide class of nonlinear time series models is proposed. In particular, we develop a partially linearized sigma point filter in which random samples of possible state values are generated at the prediction step using an exact moment-matching algorithm and then a linear programming based procedure is used in the update step of the state estimation. The effectiveness of the new filtering procedure is assessed via a simulation example that deals with a highly nonlinear, multivariate time series representing an interest rate process.  相似文献   

7.
Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input–output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process.  相似文献   

8.
Nowadays it is important to investigate and develop solar water heating systems as an environmentally friendly technology. For this reason we introduce a physically-based nonlinear mathematical model that applies to a wide range of solar heating systems. In commercial solar heating systems not all state variables are monitored by direct measurements, since some of them may be technically difficult or expensive to measure. For a better monitoring and more efficient control of the system it may be useful to estimate the unmeasured state variables.As a novelty, we apply a global nonlinear state observer to a solar domestic water heating system. The state observer has been established relatively recently in the field of control theory. The state observer we worked out enables us to estimate the unmeasured state variables in real-time. This observer is global in the sense that it works starting from any initial state. A further contribution of this work is a rather general algorithm for the practical application of the real-time estimation process, and we also give bounds of the estimation error and a practical method to decrease this error.Comparing calculated and measured values for a real particular solar heating system, we justify the usability of the state observer and the estimation process.On the basis of measured data, we show that the nonlinear mathematical model corresponding to the applied nonlinear observer is more accurate than the linear model corresponding to the classical linear Luenberger-type observer, so it is reasonable to apply the nonlinear observer.  相似文献   

9.
We introduce a flexible, open source implementation that provides the optimal sensitivity of solutions of nonlinear programming (NLP) problems, and is adapted to a fast solver based on a barrier NLP method. The program, called sIPOPT evaluates the sensitivity of the Karush?CKuhn?CTucker (KKT) system with respect to perturbation parameters. It is paired with the open-source IPOPT NLP solver and reuses matrix factorizations from the solver, so that sensitivities to parameters are determined with minimal computational cost. Aside from estimating sensitivities for parametric NLPs, the program provides approximate NLP solutions for nonlinear model predictive control and state estimation. These are enabled by pre-factored KKT matrices and a fix-relax strategy based on Schur complements. In addition, reduced Hessians are obtained at minimal cost and these are particularly effective to approximate covariance matrices in parameter and state estimation problems. The sIPOPT program is demonstrated on four case studies to illustrate all of these features.  相似文献   

10.
The problem of modeling and controlling the tip position of a one-link flexible manipulator is considered. The proposed model has been used to investigate the effect of the open-loop control torque profile, and the payload. The control strategy is based on the nonlinear State Dependent Riccati Equation (SDRE) design method in the context of application to robotics and manufacturing systems. In this paper, an experimental test-bed was developed to demonstrate the concept of end-point position feedback on a single-link elastic manipulator, and the control strategy for a single-link flexible manipulator. The controller is designed based on the nonlinear SDRE developed by the authors and applied to a flexible manipulator. The experimental results are compared with conventional PD controller strategy. The results reveal that the nonlinear SDRE controller is near optimal and robustly; and its performance is improved comparing to the PD control scheme.  相似文献   

11.
Robust state estimation and fault diagnosis are challenging problems in the research of hybrid systems. In this paper, a novel robust hybrid observer is proposed for a class of uncertain hybrid nonlinear systems with unknown mode transition functions, model uncertainties and unknown disturbances. The observer consists of a mode observer for discrete mode estimation and a continuous observer for continuous state estimation. It is shown that the mode can be identified correctly and the continuous state estimation error is exponentially uniformly bounded. Robustness to unknown transition functions, model uncertainties and disturbances can be guaranteed by disturbance decoupling and selecting proper thresholds. The transition detectability and mode identifiability conditions are rigorously analyzed. Based on the robust hybrid observer, a robust fault diagnosis scheme is presented for faults modeled as discrete modes with unknown transition functions, and the analytical properties are investigated. Simulations of a hybrid three-tank system demonstrate that the proposed approach is effective.  相似文献   

12.
In this paper, a robust adaptive neural network synchronization controller is proposed for two chaotic systems with input time delay and uncertainty. The studied chaotic system may possess a wide class of nonlinear time-delayed input uncertainty. The radial basis function (RBF) neural network is used to approximate the unknown continuous bounded function item of the time delay uncertainty via appropriate weight value updated law. With the output of RBF neural network, a robust adaptive synchronization control scheme is presented for the time delay uncertain chaotic system. Finally, a simulation example is used to illustrate the effectiveness of the proposed synchronization control scheme.  相似文献   

13.
14.
In this paper, the radial basis function (RBF) is introduced into the reproducing kernel particle method (RKPM), and the radial basis reproducing kernel particle method (RRKPM) is proposed for solving geometrically nonlinear problem of functionally graded materials (FGM). Compared with the RKPM, the advantages of the proposed method are that it can eliminate the negative effect of different kernel functions on the computational accuracy, and has higher computational accuracy and stability. Using the Total Lagrange (T.L.) formulation and the weak form of Galerkin integration, the corresponding formulae for geometrically nonlinear problem of FGM are derived. The penalty factor, shaped parameter of the RBF, the control parameter of influence domain radius, loading step number and node distribution are discussed. Furthermore, the effects of different gradient functions and exponents on displacement and stress are analyzed. Newton-Raphson (N-R) iterative method is utilized for numerical solution. The proposed method is correct and effective for solving geometrically nonlinear problem of FGM, which can be demonstrated by several numerical examples.  相似文献   

15.
A suitable design of state estimators for advanced control requires a detailed and representative mathematical model for capturing the nonlinear process behavior. The system observability, i.e. when the set of measurements provides enough information to estimate all the system states, is not a premise of the derivation of the Kalman filter. However, this propriety can improve the state estimator performance. On the basis of these design tasks, we outline a state estimation tuning strategy for different model formulations and present an algorithm to select the smallest number of measured variables to guarantee the system observability. The Williams–Otto semi-batch reactor was selected as case study, since its model formulation can be represented by two different set of states: (a) a mass basis states set and (b) a mass fraction basis states set. While the process-noise covariance matrix Q in the state estimator can be a diagonal and constant for the first model formulation, the matrix Q is not diagonal and time-varying for the second one due to their highly correlated states. Our results have shown how to convert the tuning matrices between different state definitions so that similar estimation results can be achieved.  相似文献   

16.
Applications of internal model control (IMC) based single loop controller tuning in atmospheric and vacuum distillation units were investigated. The robust IMC-PID controller not only inherits the virtues that the IMC controller has, but also has a simple and general structure such as that of a PID controller. Tuning and optimization of controllers becomes more convenient using the IMC-PID controller. It can also become easier to achieve in a distributed control system (DCS) via control module configuration. In order to make it easier to apply in industrial processes, the modeling problem of the industrial process should be resolved. In this paper, a convenient closed-loop system identification strategy based on new Luus-Jaakola (NLJ) algorithm was presented, meanwhile, the principle of IMC-PID was interpreted. A software package was developed, capable of collecting actual data on-line, obtaining the process model and optimizing the parameters of the controllers. It was applied in an atmospheric and vacuum distillation unit of a refinery to tune the PID parameters of all controllers. The application results demonstrate the validity of the proposed method.  相似文献   

17.
This paper addresses the controller design problem of a nonlinear single degree-of-freedom structural system excited by the earthquake. Bouc–Wen model, as an efficient hysteresis modeling method, is used to model the system nonlinearity. Sliding mode control (SMC), due to its robustness in dealing with uncertainty, is utilized as the main control strategy. An optimal sliding surface is presented which minimizes the displacement and control force in terms of a quadratic cost function. Two numerical examples are given to illustrate the effectiveness of the proposed strategy subject to three earthquakes of El-Centro, Rinaldi and Kobe. Simulation results show a significant and considerable reduction in structural response and indicate that the performance of suggested optimal SMC strategy is remarkable.  相似文献   

18.
We consider the problem of open-loop viable control of a nonlinear system in Rn in the case of a nonexactly known initial state. We characterize the family of those initial sets for which the problem is solvable. The characterization employs the notion of a contingent field to a given collection of sets introduced in the paper. It also involves an appropriate set-dynamic equation that describes the evolution of the state estimation within a prescribed collection of sets. An extension of the classical concept of viability kernel with respect to this set-dynamic equation is the key tool. We present an approximation scheme for the viability kernel which is numerically realizable in the case of low dimension and simple collections of sets chosen for state estimation (balls, ellipsoids, polyhedrons, etc.). As an application, we consider a viability differential game, where the uncertainty may enter also in the dynamics of the system as an input which is not known in advance. The control is then sought as a nonanticipative strategy depending on the uncertain input.  相似文献   

19.
研究一类具有非线性不确定参数的非线性系统的自适应模型参考跟踪问题.假设系统的非线性项关于不确定参数是凸或凹的.去掉了在先前有关研究中要求参考模型矩阵有小于零的实特征值的条件.既考虑了状态反馈控制方式,也考虑了输出反馈控制方式.在采用输出反馈控制时,假设非线性项满足李普希兹条件,但李普希兹常数未知.基于一种极大极小方法,提出了一种自适应控制器的设计方法.控制器是连续的,能保证闭环系统的所有变量有界,并且渐近精确跟踪参考模型.举例说明了本结论的有用性.  相似文献   

20.
This contribution is concerned with novel approaches for error estimation and the improvement of first-order design sensitivities for the state. These approaches are based on an exact representation of the design sensitivity of the state, which is obtained by performing different Taylor expansions with integral remainders. We consider a general variational framework and present the application of the proposed approach to shape sensitivity for the model problem of nonlinear elasticity. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号