首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemiluminescence (CL) method for the determination of humic acid (HA) based on the oxidation of HA with hydrogen peroxide in the presence of formaldehyde in alkaline solution is described. This method is sensitive and selective for the determination of HA in natural water. HA produces strong CL in the oxidation of HA with MnO4, Br2, ClO, and Cr2O72−, and the H2O2. HA-H2O2-HCHO system is suitable for the determination of HA because of its high sensitivity and high selectivity. The detection limit was 50 ppb and relative standard deviation for five measurements of 0.5 ppm (w/w) HA was 1.8%. Cations such as Na+, K+, Mg2+, Cu2+, and Fe3+ and anions such as PO43−, NO3, CO32−, SO42−, Cl, and Y (EDTA-Na) did not interfere with the determination of HA. Addition of Mn(II) increased the CL intensity. The concentration of HA in natural water determined with this method is in good agreement with that determined by fluorometric analysis.  相似文献   

2.
Mir SA 《Analytica chimica acta》2008,620(1-2):183-189
A rapid technique for determination of nitrate by acid reduction and diazotization at elevated temperature has been standardized. The technique is based on quantitative diazotization of sulfanilamide by nitrate on incubation in boiling water bath for 3, 5 or 10 min in presence of high concentration of HCl, ca. 64.5%. The diazotized sulfanilamide is coupled at room temperature to N-1-(naphthyl)-ethylenediamine dihydrochloride, and the chromophore evaluated spectrophotometrically at 540 nm. The technique provides linear estimate of nitrate over the test range of 0.5 through 10 μg N mL−1 sample with all test incubation time periods using alkali nitrate and nitric acid as sources of nitrate anion. Urea treatment enables selective determination of nitrate in presence of nitrite with overall 99 ± 1% recovery, and without affecting nitrate determination (P > 0.1) or its regression coefficient. The technique has obvious advantages over metal-reduction technique. It is simple, rapid, selective in presence of nitrite, and an inexpensive method for routine determination of nitrate with detection range 0.5–10 μg N mL−1 sample. Besides, the technique provides opportunity to detect nitric acid as low as 35 μM even in presence of other acids.  相似文献   

3.
3-3′-Dimethoxybenzidine (o-dianisidine, ODA) is oxidised by Br2, among other oxidants, generating a compound that absorbs at 450 nm, while the non-oxidised reagent absorbs in the UV region. This reaction has been used previously as the basis of a continuous-flow method for the determination of bromate in ozonised water, with a detection limit lower than the maximum permitted for drinking water (10 μg L−1). The only interference observed in the method was that due to the chlorite ion (ClO2), which generated the same ODA bromation product. Thus, in systems in which O3 is employed as a disinfectant and disinfection is later enhanced with ClO and ClO2, there exists the possibility of finding BrO3 and ClO2, oxoanions generated as subproducts. The kinetic behaviour of the reaction between bromate and chlorite with bromine in acidic medium is different, allowing the proposal of a continuous-flow method for the simultaneous or sequential determination of both subproducts in water purification systems. None of the other subproducts interfered in the reaction. Kinetic differentiation was achieved by combining the temperature of the reaction and the length of the coils, after which it was possible to determine both analytes sequentially within a concentration range of 6–160 μg L−1.  相似文献   

4.
A highly selective and sensitive method of fluorometry is described for determination of the fluoride ion at the parts per billion level via the ion-pair complex formation of the fluoride ion with an expanded prophyrin [2,23-diethyl-8,17-bis(2-ethoxycarbonylethyl)-3,7,12,13,18,22-hexamethylsapphyrin (H3sap)]. The ion-pair complex gives out an enhanced fluorescence intensity at 680 nm on excitation at 450 nm. Since the present method is based on a direct reaction of the fluoride ion with the sappyrin, a 200-fold amount of the aluminum (III) ion [10−4M (M = mol dm−3)] and a 2000-fold amount of the iron(III) ion (10−3M) over the fluoride ion did not interfere with determination of the fluoride ion at concentrations as low as 5 × 10−7M in the presence of 1,2-diaminocyclohexane-N,N,N′,N′-teraacetic acid. The proposed method was applied to determination of the fluoride ion in various water samples (tap water, river water, rain water, underground water, and hot spring water) and satisfactory results were obtained.  相似文献   

5.
A novel sequential injection method for the determination of nitrite at nanomolar level in seawater samples has been developed. The pink azo compound was formed based on the Griess reaction and quantitatively adsorbed onto a Sep-Pak C18 cartridge. The enriched azo compound was rinsed with water and ethanol (28%, v/v) in turn, and then eluted with an eluent containing 26.6% (v/v) ethanol and 0.108 mol L−1 H2SO4. Finally the azo compound was measured using a spectrophotometer at 543 nm. Under the optimized conditions, the linear calibration ranges were 0.71–42.9 nmol L−1 for a 150-mL sample and 35.7–429 nmol L−1 for a 15-mL sample. The relative standard deviation of 8 measurements was 1.44% for 14.3 nmol L−1 nitrite. For the 150 mL sample, the detection limit was estimated to be 0.1 nmol L−1. The throughput of the method was about 4 samples per hour. The proposed method has been successfully applied to the in-field determination of nanomolar concentrations of nitrite in seawater.  相似文献   

6.
Specific determination for IO3 and I in ground water using high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) is described. Chromatographic separations were carried out using an ICS-A23 column. Iodine species were quantitatively eluted with 0.03 M ammonium carbonate. Under the Shield Torch high sensitive mode, the method detection limits for IO3 and I with injection of 1 ml were 0.035 μg l−1 and 0.025 μg l−1, respectively. The method was applied to the determination of iodide and iodate in ground water. However, the signal response difference between iodate and iodide was observed by both the HPLC-ICP-MS system and the ICP-MS system. Also, the same signal response difference was also observed in other laboratories. It was reported that the signal response and stability of iodine species vary with their solution medium. The instability of IO3 – and I – was controlled by using KOH as their solution storing media. The IO3 and I peak area ratios by HPLC-ICP-MS measurement were still close to 1:1 when the mixed standard solution was stored in the 0.01% KOH medium for 5 days.  相似文献   

7.
Gold in iron ore samples is separated from iron (major matrix cation), antimony and vanadium using anion exchange resin in (0.2 M) HBr, potassium peroxodisulfate and acetone:water:nitric acid media. The exchangeable anion Cl of the ion exchanger Dowex 1X 4 is replaced by Br using (6 M) HBr solution. Certified reference material DGP-M1, spiked ferric magnetic oxide, gold radioactive tracer 198Au and gold standard solutions are used to study the adsorption efficiency and the yield recovery of tetrabromoaurate AuBr4 from the resin. Ten eluents have been tried to elute gold from the column, and it has been found that a 10 ml potassium peroxodisulfate and 240 ml acetone:water:nitric acid [125:5:5] solution fulfills the objective. The set up of the separation procedure allows quantitative adsorption of gold by the resin, while the major matrix cation (Fe) and others (Cd, Ag, Cu, V, Sb, Ti) have been passed through the column with the feeding solution (0.2 M) HBr. The resin selectivity coefficient (K) of separating Au from Fe has been found to be KFeAu≈6.4×1011. The eluted Au is treated with K2S2O8 and H2O2 for spectrophotometric determination as rhodamine-B complex at 555.6 nm. The linearity, detection limit, precision, and accuracy of the determination method have been found to be up to 2.0 μg g−1, 0.018 μg g−1, 0.009 μg g−1 and 3%, respectively.  相似文献   

8.
A catalytic kinetic method (CKM) is presented for the determination of mercury(II) based on its catalytic effect on the rate of substitution of N-methylpyrazinium ion (Mpz+) onto hexacyanoferrate(II). The progress of the reaction was monitored spectrophotometrically at 655 nm by registering the increase in absorbance of the product [Fe(CN)5(Mpz]2− under the reaction conditions: 5 × 10−3 mol L−1 [Fe(CN)6]4−), 5 × 10−5 mol L−1 [Mpz+], T = 25.0 ± 0.1°C, pH 5.00 ± 0.02 and ionic strength, I = 0.1 mol L−1 (KNO3). Quantitative rate data at specified experimental conditions showed a linear dependence of the absorbance after fixed time A t on the concentration of mercury(II) catalyst in the range 20.06–702.1 ng mL−1. The maximum relative standard deviations and percentage errors for the determination of mercury(II) in the range of 20.06–200.6 ng mL−1 were calculated to be 1.7 and 2.7% respectively. The detection limit was found to be 7.2 ng mL−1 of mercury(II). Accuracy (expressed in terms of recoveries) was in the range of 98–103%. Figures of merit and interference due to many cations and anions was investigated and discussed. The applicability of the method was demonstrated by determining the mercury(II) in different synthetic samples and confirming the results using atomic absorption spectrophotometry. The proposed method allowed determination of mercury(II) in the range 20.06–702.1 ng mL−1 with very good selectivity and an output of 30 samples h−1.__________From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 654–661.Original English Text Copyright © 2005 by Surendra Prasad.This article was submitted by the author in English.  相似文献   

9.
A catalytic for determination of nanomolar concentrations of Co(II), i.e., oxidation of -adrenaline hydrochloride with H2O2 in alkaline medium, is proposed. The reaction gives a low limit of detection of 2.5 × 10 −9 M Co(II) in the reaction mixture, good reproducibility with a relative standard deviation (R.S.D.) of 4−5% in the Co(II) concentration range 8.0 × 10−9−8.0 × 10−8M and good selectivity. On the basis of this indicator reaction, a catalytic-spectrophotometric method for the determination of cobalt in small urine samples (5.00 ml) was elaborated. The analysis of 17 urine samples, taken from healthy persons of different ages, gave cobalt concentrations in the range 0.20–1.50 μmol 1−1. The R.S.D. for ten replicate analyses of a urine sample with an average cobalt content of 0.63 μmol 1−1 was 5.6%. The reliability of the method was verified by a comparative photometric method (r = 0.9755) and by a determination based on known additions of cobalt (r = 0.9894).  相似文献   

10.
The use of rice husks as an alternative adsorbent in an on-line preconcentration system for Cd (II) and Pb (II) determination by flame atomic absorption spectrometry (FAAS) is described. The potential of rice husks as a natural adsorbent was evaluated as a material modified with 0.75 mol l−1 NaOH solution and in the unmodified form. For this task, several techniques such as spectroscopy and thermogravimetry were used for elucidation of possible functional groups responsible for the uptake of Cd (II) and Pb (II). Furthermore, based on adsorption studies and adsorption isotherms applied to the Langmüir model, it was possible to verify that modified rice husks present a higher adsorption capacity for both metals. After establishing this material as a promising natural adsorbent, it was used for on-line preconcentration of Cd (II) and Pb (II) metals. The multivariate optimisation of chemical and flow variables was performed by using a full factorial design (24) including the following factors: preconcentration time, preconcentration flow rate, concentration and volume of eluent. The optimum pH values used for on-line preconcentration were taken from prior univariate experiments. Under optimised conditions for Cd (II) determination (4 min of preconcentration at a 6 ml min−1 preconcentration flow rate, in which comprises 24 ml of preconcentration volume, 200 μl elution volume and 1.0 mol l−1 HNO3 solution as eluent), the system achieved a detection limit of 1.14 μg l−1 and an enrichment factor of 72.4. Similar conditions were used for Pb (II) determination (4 min of preconcentration, 6 ml min−1 preconcentration flow rate, 300 μl elution volume and 1.0 mol l−1 HNO3 solution as eluent) from which a detection limit of 14.1 μg l−1 and enrichment factor of 46.0 were achieved. Also, rice husks have been shown to be a homogeneous and stable adsorbent in which more than 100 preconcentration/elution cycles provide a relative standard deviation (RSD) of less than 6.0% on the analytical signal. The satisfactory accuracy of the method developed was obtained by using spiked water samples (mineral water and lake water) and spiked red wine samples. These values were confirmed by electrothermal atomic absorption spectrometry (ETAAS). The certified reference material [pig kidney (CRM 186)] and the reference material [beech leaves (CRM 100)] were also used.  相似文献   

11.
Extraction of vanadium-4-(2-thiazolylazo)resorcinol complexes by quaternary salts such as triphenylmethylarsonium iodide, tetraphenylarsonium chloride, and tetraphenylphosphonium chloride has been studied. Quantitative extraction is achieved with tetraphenylarsonium and tetraphenylphosphonium chlorides in the pH region between 3.5 and 5. The optimum conditions for the extraction and spectrophotometric determination of vanadium in the extract are: pH 3.8–4.0, the concentration of vanadium 0.1–0.4 μg/ml. Effective molar absorptivity at λmax = 555 is (2.55 ± 0.05) × 104 liters mol−1 cm−1. Beer's law is obeyed. Relative standard deviation is 2–10% depending on the concentration level. The composition of the extracted complexes was studied in the solution and in the solid state. For their characterization chemical and spectral evidence and comparison with the vanadium-PAR complexes have been combined.  相似文献   

12.
Salicylaldehyde rhodamine B hydrazone (SRBH) was developed as a new spectrofluorimetric probe for the selective and sensitive detection of CrO42− in acidic conditions. The proposed method was based on the special oxidation reaction between non-fluorescent SRBH by potassium dichromate to produce a highly fluorescent rhodamine B, as a product. Under the optimum conditions described, the fluorescence enhancement at 591 nm was good linearly related to the concentration of CrO42− from 1.0 × 10−8 to 3.0 × 10−7 M (0.42–12.6 ng mL−1) with a correlation coefficient of R2 = 0.9989 (n = 10) and a detection limit of 1.5 × 10−9 M (0.063 ng mL−1). The relative standard deviation (R.S.D.) was 2.0% (n = 6). The proposed method was also successfully applied to the determination of chromium (VI) in drinking water, river water and synthetic samples.  相似文献   

13.
A sensitive voltammetric method has been developed for the determination of total or single species of sulfur anions containing sulfide, sulfite and thiosulfate. The method is based on the catalytic effect of tris(2,2'-bipyridyl)Ruthenium(II) (Ru(bpy)2+ 2) as a homogeneous mediator on the oxidation of those anions at the surface of a glassy carbon electrode. A reversible redox couple of Ru(II)/Ru(III) were observed as a solute in aqueous solution. Cyclic voltammetry study showed that the catalytic current of the system depends on the concentration of the anions. Optimum pH values for voltammetric determination of sulfite, thiosulfate and sulfide has been found to be 5.6, 10.0 and 10.0, respectively. Under the optimized conditions the calibration curves have been obtained linear in the concentration ranges of 0.8–500.0, 0.4–1000.0 and 0.5–5000.0 µmol L− 1 of SO32−, S2O32− and S2−, respectively. The detection limits have been calculated to be 0.40, 0.17 and 0.33 µmol L− 1 for SO32−, S2O32− and S2−, respectively. The diffusion coefficients of sulfite and thiosulfate have been estimated using chronoamperometry. The chronoamperometric method also has been used to determine the catalytic rate constant for catalytic reaction of the Ru(bpy)2+ 2 with sulfite and thiosulfate. Finally the proposed method has been used for the determination of total sulfur contents in real samples of water and wastewater. Moreover the sulfite content in sugar and sulfur dioxide in air has been determined with satisfactory results.  相似文献   

14.
A voltammetric method of Cr(VI) determination in a flow system based on the combination of selective accumulation of the product of Cr(VI) reduction on hanging mercury drop electrode and a very sensitive method of chromium determination in the presence of cupferron previously described is proposed. The calibration graphs were linear from 3 × 10−9 to 3 × 10−8 and from 5 × 10−10 to 5 × 10−9 mol L−1 for accumulation times of 120 and 600 s, respectively. The detection limit for the accumulation time of 600 s was 9 × 10−11 mol L−1. The relative standard deviation was 5.1% (n = 5) for Cr(VI) concentration 1 × 10−8 mol L−1 and the accumulation time of 120 s. The influence of foreign ions commonly present in water samples is presented. The validation of the method was made by studying the recovery of Cr(VI) from spiked natural water samples.  相似文献   

15.
A large data set obtained by a one-year monthly determination of ions (F, Cl, Br, NO3, NO2, PO43−, SO42−, Na+, K+, Ca2+, Mg2+, NH4+) and trace metals of environmental concern (Ni, Co, Mn, Fe) from the tributaries of Lake Como (Lombardy, Northern Italy) was treated by three-way Principal Component Analysis. The results showed that the chemical features of the investigated rivers are mainly related to the lithology of the watershed. Some cases of contamination were evidenced and rationalized on the basis of anthropic pollution or on the basis of the geochemical features of the territory. The method here proposed allows an easy and quick interpretation of the chemical data by means of graphical devices. The information extracted by the three-way models would be very useful to regional agencies in developing a strategy to manage water resources in the whole basin of Lake Como.  相似文献   

16.
A sensitive extraction-spectrophotometric method of the determination of osmium, taking advantage of the ion-associate of the chloride osmium anion with brilliant green has been developed. The complex is extracted from aqueous phase with a mixture of C6H5Cl + CCl4 (3 + 1). Molar absorptivity () at 640 nm is 1.95 × 105 liters mol−1cm−1 (specific ABSORPTIVITY = 1.03). The relative standard deviation is 1–3%. The mole ratio of Os:BG in the complex is 1:3. Platinum metals interfere with the determination of osmium. The determination can be highly selective after preliminary separation of osmium by distillation as OsO4.  相似文献   

17.
The present paper proposes an on-line pre-concentration procedure for lead determination in drinking water and saline waste from oil refinery by flame atomic absorption spectrometry (FAAS). It is based on the sorption of lead (II) ions in a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR) reagent. The optimization step was performed using Doehlert matrix involving the variables: sampling flow rate (SR), buffer concentration (BC), pH and eluent concentration (EC). The validation process was performed considering the parameters: linearity and other characteristics of the calibration curve, analytical features of on-line system, precision, robustness, effect of other ions in the pre-concentration system and accuracy. Using the established experimental conditions, the procedure allows lead determination with detection limit (3δ/S) of 0.4 μg l−1, quantification limit (10δ/S) of 1.4 μg l−1, and a precision, calculated as relative standard deviation (RSD) of 5.7 (n=8) and 2.1% (n=8) for lead concentration of 5 and 50 μg l−1, respectively. The pre-concentration factor (PF) considering the ratio among the slopes of the analytical curves with and without pre-concentration is 51. The achieved recovery for lead determination in presence of several cations demonstrated that this procedure could be applied for analysis of water samples. The accuracy was confirmed by analysis of the standard reference material NIST 1640 Trace elements in natural water. The sorption process was characterized by the Langmuir isotherm. The method was applied for lead determination in drinking water collected in Salvador City, Brazil and in saline effluent samples from oil refinery. The lead content for 16 samples of drinking water analyzed varied from 0.77 to 6.98 μg l−1.  相似文献   

18.
A multi-syringe flow injection system for the potentiometric determination of exchangeable potassium in soil samples is proposed. Firstly, a manifold was devised to allow determination in soil extracts prepared off-line. It was possible to analyze samples prepared in extractants with different composition (Mehlich or Morgan) without physical or chemical modification of the manifold. A linear dynamic concentration range of 6–391 mg L− 1 was obtained, allowing the direct introduction of soil extract without dilution. A determination frequency of 50 h− 1 was achieved, with good repeatability for 10 consecutive injections of soil extracts (RSD < 3.0%). The in-line preparation of soil extract was implemented by automatic addition of extractant solution to a previously weighed portion of soil, followed by in-line filtration. Good repeatability was attained as the variance of the extraction procedure was not significantly different from the variance obtained in consecutive measurements of the same extract. Furthermore, results comparable to those obtained by off-line extraction and determination by flame emission spectrometry were attained for the two soil samples tested. Using this procedure, a determination frequency of 13 h− 1 and a sampling rate of 4 h− 1 were achieved.  相似文献   

19.
Díaz TG  Cabanillas AG  Soto MD  Ortiz JM 《Talanta》2008,76(4):809-814
Square-wave adsorptive-stripping voltammetry technique has been used to develop a method for the determination of fenthion in olive oil. Due to the fact that fenthion does not give any electrochemical signal at mercury electrode, the method has been based on a previous oxidation of fenthion to its metabolite, fenthion-sulfoxide, by using KMnO4. The metabolite gives rise to a peak due to an adsorptive-reductive process at −0.786 V. Fenthion is isolated from olive oil by carrying out a solid–liquid extraction procedure using silica cartridge, followed by a liquid–liquid partitioning with acetonitrile. The detection limit in olive oil is 78.8 ng g−1 and recoveries for four levels of fortification are ranged from 85% to 109%. On the other hand, it has been developed a method for the simultaneous determination of fenthion and its metabolite fenthion-sulfoxide, in river water. Pesticides are isolated from water by carrying out a liquid–liquid partitioning with trichloromethane. The detection limits are 0.41 ng g−1 and 0.44 ng g−1, for fenthion and fenthion-sulfoxide, respectively. Recoveries for three levels of fortification are ranged from 96% to 103% for fenthion and 94% to 104% for fenthion-sulfoxide.  相似文献   

20.
A new spectrofluorimetric method for the determination of ruthenium with nonfluorescent 2-(α-pyridyl) thioquinaldinamide (PTQA) is described. The oxidative reaction of Ru(III) upon PTQA gives oxidised fluorescent product (λex(max)=347 nm; λem(max)=486 nm). The sensitivity of the fluorescence reaction between ruthenium and PTQA is greatly increased in the presence of Fe (III). The reaction is carried out in the acidity range 0.01–0.075 M H2SO4. The influence of reaction variables is discussed. The range of linearity is 1–400 μg l−1 Ru(III). The standard deviation and relative standard deviation of the developed method are ±1.210 μg l−1 Ru (III) and 2.4%, respectively (for 11 replicate determinations of 50 μg l−1 Ru (III)). The effect of interferences from other metal ions, anions and complexing agents was studied; the masking action is discussed. The developed method has been successfully tested over synthetic mixtures of various base metals and platinum group metals, synthetic mixtures corresponding to osmiridium, certified reference materials in spiked conditions and rock samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号