首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the static and dynamic light scattering measurements were used to investigate the solution properties and the aging effects on PVA/DMSO/water ternary system in dilute region at 25 °C. It was found that the phase separation and aggregate behavior occurs rapidly and obviously when DMSO mole fraction (X1) in the solvent mixture is between 0.2 and 0.33, especially at 0.25. In this solvent composition range, a broad peak which indicates phase separation and chain aggregation can be observed from static light scattering measurement. However, when DMSO mole fraction is increased to 0.37, no such peak is present. For this ternary system, the gelation mechanism and the relationship between the phase separation behavior and the gelation of the formed physical gels were also investigated through the gelation kinetic analyses in the dilute and semi-dilute region. It is concluded that the cononsolvency effect in the dilute solution is not the sole origin that affects the phase separation, aggregation, and gelation behavior for the ternary system in a higher polymer concentration range. The hydrodynamic factors such as the higher viscosity and slower polymer chain diffusion that are resulted from higher polymer concentration should be also considered.  相似文献   

2.
The equilibrium phase behavior of ethylene vinyl alcohol (EVAL) copolymer in mixtures of DMSO (dimethylsulfoxide, solvent) and water (nonsolvent) was studied for different temperatures. Both crystallization-induced gelation and liquid-liquid demixing were observed. From the determined phase diagram of this system at 25°C, three regions may be identified, i.e., a homogeneous region, a gel region, and binodal region in which both types of phase transition take place. At higher temperatures, crystallization isotherm was found to intersect the binodal phase boundary, which is analogous to the phase behavior reported by Stokes and Berghmans for several binary systems.  相似文献   

3.
The crystallization-induced gelation from decalin solutions of a series of ethylene-butene random copolymers covering the range of crystal weight fraction 0.32–0.74 and having nearly equal molar weights has been investigated as a function of concentration. Swollen as well as dried gels have been characterized by means of differential scanning calorimetry, mechanical tests and scanning electron microscopy. The critical concentration for gelation is shown to be strongly dependent on the crystallinity of the polymers. On the contrary, the critical concentration for chain entanglement is quite invariant. A liquid-liquid phase separation phenomenon prior to the crystallization upon cooling is disclosed for the more crystalline materials. The better solubility of the co-unit rich copolymers is ascribed to a more favorable interaction parameter towards decalin with increasing co-unit content. Common aspects of the gelation process of the copolymers with that of atactic amorphous and isotactic semicrystalline polystyrene are discussed.  相似文献   

4.
Liquid–liquid equillibria (LLE) of the tertiary system of hydroxypropylated polyrotaxane (HPPR)–poly(vinyl alcohol) (PVA)–solvent have been investigated by focusing on the internal structures of HPPR–PVA blend gels. The phase diagrams of the HPPR–PVA aqueous systems displayed two liquid phases at a high concentration and molecular weight of PVA. This result was consistent with the prediction of the Flory–Huggins lattice model. On the contrary, the HPPR–PVA–DMSO system exhibited only a single phase. The HPPR–PVA blend gels crosslinked in dimethylsulfoxide (DMSO) were highly transparent over a wide concentration range, while the gels prepared in water were opaque at high polymer concentrations. Spherical domains were observed in the opaque gels by laser scanning confocal microscopy, and the sizes of the domains were significantly dependent on the amount of cross-linking reagent utilized. These results indicated that the transparency of the HPPR–PVA blend gels was strongly affected by the competition between the liquid–liquid two-phase separation and the crosslinking HPPR and PVA polymers during the preparation of the blend gels.  相似文献   

5.
The gelation behavior of polyacrylonitrile (PAN)/dimethyl sulfoxide (DMSO) solution containing different amounts of water has been investigated using various methods. The ternary phase diagram of PAN/DMSO/water system indicated that water enhanced the temperature at which phase separation of PAN/DMSO solution occurred. Intrinsic viscosities [η] of dilute PAN/DMSO solution and PAN/DMSO/water solution at varied temperatures were measured to examine the influence of water on the phase behavior of PAN/DMSO solution. The presence of water in the solution gave rise to elevated critical temperature Tc. The gelation temperature Tg obtained by measuring the loss tangent tan δ at different oscillation frequencies in a cooling process was found to increase with increased water content in the solution. The critical relaxation exponent n value, however, changed little with varied concentration. During the aging process, the gelation rate of PAN/DMSO solution increases with the water level. The n values of the PAN/DMSO solutions with 2 wt% and 4 wt% water were a little larger than that of the solution without water, which may be explained by the turbid gel resulted from phase separation. The n values obtained in the aging process were larger than those obtained in the cooling process for the same three solutions, ascribed to the weaker gel with less cross-linking points formed in long time. Water led to the formation of denser gel structure. The coarser gel surface can also be attributed to the phase separation promoted by water.  相似文献   

6.
Herein we present a new perspective showing that water-soluble liquids, when added to water, undergo transient emulsification before complete dissolution. Thus, non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears. A representative case shown here is that when poly(N-isopropylacrylamide)(PNIPAm), prepared by aqueous radical polymerization, in methanol solution is added into water, the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface. This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating. We proposed a new concept "interfacial cononsolvency" to describe the formation process. Due to the easy modification process, sugar-contained PNIPAm chains are synthesized by copolymerization. As an application example, it is shown that these sugar-contained PNIPAm chains can afford "sweet" micro-vesicles(containing glucose residues). And the "sweet" micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.  相似文献   

7.
The polycondensation reaction of dimethyl tartrate (DMT) with hexamethylenediamine (HMD) was carried out in dimethyl sulfoxide (DMSO) at 60°C in the presence of various polymer matrices, which were expected to interact with DMT or the resulting polyamide which had pendant hydroxyl groups due to hydrogen bonding. It was found that the rate of polycondensation was enhanced by polymer matrices such as poly(vinyl pyrrolidone) (PVP), Pullulan (polysaccharide) (PF), and poly(vinyl alcohol) (PVA). The rate enhancement became more pronounced with increasing molecular weight of the polymer matrix. When polycondensation in the presence of PVA was carried out in DMSO, a polymer complex was produced. The formation of the polymer complex between the resulting polyamide and PVA during polycondensation was dependent on the concentration of monomers and also on PVA; a gelation of the solution was observed at a concentration of PVA.  相似文献   

8.
Flory-Huggins theory of polymer solutions has been used to express the condition of extrema values in the total sorption, as well as the inversion point in the preferential adsorption parameters for termary polymer systems. Two approaches have been followed, the first considers the binary and ternary interaction parameters independent of polymer concentration and solvent composition. In the second one, this dependence has been introduced. Our attention is focused on the volume fraction of solvent mixture dependence of the above parameters, in order to confirm or not the coincidence between the extrema values and the inversion point. Several cosolvent and cononsolvent ternary polymer systems, have been used to test the validity of the equations obtained. Also, it has been verified, from an experimental point of view, that in cosolvent ternary polymer systems there is coincidence in both compositions while in cononsolvent ternary polymer systems, such coincidence does not appear.  相似文献   

9.
Poly(vinyl alcohol) (PVA) was converted into melt flowable derivatives by complexation with a small amount of n-butyl boronic acid (BBA) and phenyl boronic acid (PBA) in dimethylsulfoxide (DMSO), and their thermal properties were examined from a viewpoint of the melt spinning of the complexes. It was found that (1) the melting temperature of the PVA–boronic acid complexes decreases and their degradation temperature increases with increasing the boronic acid content; (2) no gelation occurs for the PVA complexes with BBA and PBA in DMSO; (3) PBA gives a larger melting-temperature depression for PVA than BBA, but the spinnability of the complexes with BBA is much better than that with PBA; and (4) the melt-molded PVA complex fibers can be easily regenerated into PVA fibers with hot water. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3045–3050, 1998  相似文献   

10.
Gel spinning of poly(vinyl alcohol) (PVA) was attempted from the PVA dope prepared from the mixture of dimethyl sulfoxide (DMSO) and water. The DMSO/H2O = 80/20 (w/w) mixture and methanol were found to be the best solvent for the spinning dope and the coagulant, respectively, to give PVA fiber with the highest drawability. PVA fiber with the highest strength and Young's modulus were obtained from the undrawn gel fibers when subjected to hot two-stage drawing under conditions such as to produce maximum drawability. Furthermore, higher draw ratios of PVA fiber were attained at 6 wt % dope by lowering the coagulating temperature of methanol. In the present work, the highest tensile strength (2.8 GPa) and the highest Young's modulus (64 GPa) were realized, when the spinning dope was prepared from PVA with DP of 5,000 and the DMSO/H2O (80/20) mixed solvent to have the PVA concentration of 6 wt %, the coagulating temperature of methanol was ?20°C, and the two-stage drawing was carried out at 160 (first) and 200°C (second). The PVA fiber prepared under this gel spinning condition could be elongated to 45 times draw ratio. The very high drawability of PVA fibers obtained from the DMSO/H2O (80/20) mixture dope was ascribed to the ability of the DMSO/H2O mixture to promote gelation. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
High resolution PMR has been used to study the interaction of electron donor molecules (EDM) (acetone, acetonitrile, pyridine (Py), and dimethylsulfoxide (DMS)) with the hydrate surface structures of graphite oxide.It has been found that only relatively strong EDM (pyridine and DMSO) can destroy the hydrogen-bonded poly-aqua-associates between the graphite oxide layers. A peculiar effect of Py manifests itself in the direct interaction of its molecules with the structural OH groups of the graphite oxide, and of DMSO in the formation of sorption-molecular complexes on the surface of the first hydrate layer, thus screening the solid graphite oxide phase from the bulk of the solution. Acetone and acetonitrile have no noticeable effect in the system.Institute of the Chemistry of Surtaces, Academy of Sciences of the Ukrainian Kiev. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 2, pp. 201–205, March–April, 1991. Original article submitted July 7, 1989.  相似文献   

12.
We report the swelling behavior of chemically crosslinked polyvinyl alcohol (PVA) gels with different degrees of hydrolysis in water, several organic solvents, and their mixed solvents. The gels were dried after gelation and were put into their respective solvents. The gel volume in pure water decreased with increasing temperatures, and the total changes increased with decreasing degrees of hydrolysis. The swelling ratio depends on the solvent and its concentration. In the cases of mixed solvents of methanol–water, ethanol–water, and acetone–water, the gels shrank continuously with increasing concentrations of solvents and reached the collapsed state in the pure organic solvent. In the case of dimethyl sulfoxide (DMSO), on the other hand, the gels shrunk, swelled, and finally reached the swollen state in pure DMSO. Results of measurements using Fourier Transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) suggested that crosslinks and microcrystallites were formed due to hydrogen bonds during the drying process after gelation. The hydrogen bonds were partly destroyed in a rich solvent, but the residual hydrogen bonds had an essential role in determining the swelling behavior in a poor solvent. The swelling behavior and the possible phase transition of the present system are discussed in terms of the solubility of polymers with different degrees of hydrolysis in given mixed solvents and in terms of the formation and destruction of physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1978–1986, 2010  相似文献   

13.
Glutamine derivative 1 with two‐photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self‐assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self‐assembled into H‐aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong π–π interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two‐photon absorption of the gelator molecule.  相似文献   

14.
Temperature-responsive phase separations of poly(N-isopropylacrylamide) (PNiPAm)/dimethylsulfoxide (DMSO)/water mixtures have been investigated by infrared and confocal micro-Raman spectroscopy. The ternary mixtures exhibited lower critical solution temperature (LCST) and upper critical solution temperature (UCST) phenomena at low and high DMSO concentrations, respectively. The amide I band of PNiPAm consists of two components; the intensity of the 1650 cm-1 component increased, and that of the 1625 cm-1 component decreased with increasing temperature during both LCST and UCST phase transitions. Gradual red shifts of the C-H stretching and the amide II bands with increasing temperature or increasing DMSO concentration indicate a removal of water molecules from the alkyl and N-H groups. Raman microscopic measurements showed that DMSO is excluded from the polymer-rich phases upon both LCST and UCST phase separation. On the basis of the experimental results and the quantum chemical calculations, a model that explains the solvation change of the polymer during phase transitions was proposed.  相似文献   

15.
The diffusion and gelation dynamics of nonsolvent-induced phase inversion in several polyethersulfone (PES)/solvent/nonsolvent systems are observed using a dark-ground optical technique. The observed dynamics are correlated with the resultant morphologies of the solidified gels obtained via scanning electron microscopy. In situ dynamic measurements show that rapid precipitations result in finger formation and delayed precipitations result in sponge formation. Rapid precipitations for some systems also exhibit an initial region of high, anomalous diffusion front motion which correlates well with the appearance of finger-like macrovoids in the film sublayer. Micrographs of both thin (200–300 μm) and thick (3 mm) films formed by liquid-liquid demixing clearly show that the overall morphologies scale with initial film thickness. However, as observed for the cellulose acetate (CA)/dimethylsulfoxide (DMSO)/H2O system, the possibility of crystallization can complicate the scaling analysis. A ternary diffusion model is also employed to describe the isothermal diffusion encountered during the formation of PES membranes. Binary thermodynamic and kinetic parameters needed for computations are determined from experimental data. Model results agree well with experimental observations. The model accurately predicts the transition from finger-to-sponge formation, as well as other observed trends in dynamics and morphology. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 569–585, 1997  相似文献   

16.
In this work, the competing effects of sodium chloride (NaCl) and tetrahydrofuran (THF) on carbon dioxide hydrate formation are investigated through phase equilibrium measurements. The phase behaviour in the hydrate forming region for the binary system carbon dioxide–water, the ternary systems carbon dioxide–tetrahydrofuran–water and ternary carbon dioxide–sodium chloride–water and, in addition, the quaternary system carbon dioxide–tetrahydrofuran–water–sodium chloride are determined experimentally, using a Cailletet apparatus. All measurements are made in a temperature and pressure region of 275–290 K and 0.5–7.0 MPa, respectively. In these ranges, three different hydrate equilibrium curves are measured namely: H-LW-V, H-LW-LV-V and H-LW-LV. The formation of an organic-rich liquid phase in the systems due to a liquid–liquid two-phase split between water and tetrahydrofuran when pressurized with carbon dioxide causes the occurrence of an upper quadruple point (Q2) to evolve into a four-phase H-LW-LV-V equilibrium line. The presence of sodium chloride in the quaternary system enhances the split between the two liquids due to the salting-out effect. It was found that the hydrate promoting effect of tetrahydrofuran is able to suppress the inhibiting effect of sodium chloride especially at lower concentration of sodium chloride.  相似文献   

17.
The solubility of carbon dioxide in pure water in the presence of CO2 gas hydrate has been measured at temperatures between 273 and 284 K and pressures ranging from 20 to 60 bar. It was found that the solubility decreases with decreasing temperature in the hydrate formation region. In the absence of gas hydrate, the gas solubility increases with decreasing temperature, but the hydrate formation process changes this trend. This confirms theoretical calculations as well as removes previously reported ambiguities. It was also observed that pressure was not a strong factor on the solubility.  相似文献   

18.
Poly-N-isopropyl acryl amide (PNIPAM) is swollen in both pure water and pure methanol but collapses in mixtures of these solvents. In this review, this cononsolvency of PNIPAM in water/methanol mixtures is discussed. Experimental studies of linear PNIPAM chains and macrogels are compared to microgels. Theoretical studies are presented based on molecular dynamics simulation and quantum mechanical calculations as well as semi-empirical models. The different explanations for the cononsolvency available in the literature are introduced. Experiments show that all PNIPAM species collapse and re-swell at comparable methanol fraction in the mixture. Cross-linker density of macrogels and microgels has only slight influence on cononsolvency, whereas chain length of linear chains has a significant influence. Microgels provide advantages to study cononsolvency by en'abling a broader experimental approach. Furthermore, multi-sensitive microgels can be prepared, which contain compartments sensitive to different stimuli.  相似文献   

19.
Polyacrylonitrile (PAN) microfibrils were prepared directly via the solution polymerization of acrylonitrile at specified ratios of controlling solvent dimethyl sulfoxide (DMSO) to non‐solvent tert‐butyl alcohol. At first, gel formation occurred due to the interaction between DMSO and the cyano groups of PAN. The microfibrillar structure was then formed through the phase separation of PAN molecules from the gel. It is shown that very small variations in the solvent/non‐solvent ratio facilitate a major change in the gelation and phase separation processes.  相似文献   

20.
Prediction and control of membrane morphology using multi‐phase thermodynamic knowledge are of growing interest. The water/dimethylsulfoxide/polyethersulfone ternary system is a widely used casting dope for the preparation of MF, UF, and NF membranes. In the current study, Flory–Huggins (F–H) model was applied to predict the behavior of this ternary system during phase inversion. Titration method was applied to generate cloud point data. The prediction accuracy of the F–H model was directly dependent on the binary interactions of the system components. The compressible regular solution (CRS) model predicts the binodal location using only the pure component properties as the input parameters. Accordingly, the influence of binary parameters on the location of the binodal curves was investigated. The predicted binodal points showed superior accordance with the experimental data, where the binary interaction between nonsolvent (water) and solvent (DMSO) was overlooked. In addition, the modelling results emphasized on the pivotal importance of the interactions between polymer (PES) and nonsolvent (water) on the phase inversion and thus, on the control of the membrane morphology. The CRS model offered a greater conformity with the experimental results in comparison with the F–H theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号