首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of CpCr[(XylNCMe)(2)CH] (Xyl = 2,6-Me(2)C(6)H(3)) with pyridine N-oxide or air generated the μ-oxo dimer, {CpCr[(XylNCMe)(2)CH]}(2)(μ-O). The μ-oxo dimer was converted to paramagnetic Cr(III) CpCr[(XylNCMe)(2)CH](X) complexes (X = OH, O(2)CPh, Cl, OTs) via protonolysis reactions. The related Cr(III) alkoxide complexes (X = OCMe(3), OCMe(2)Ph) were prepared by salt metathesis and characterized by single crystal X-ray diffraction. The interconversion of the Cr(III) complexes and their reduction back to Cr(II) with Mn powder were monitored using UV-vis spectroscopy. The related CpCr[(DepNCMe)(2)CH] (Dep = 2,6-Et(2)C(6)H(3)) Cr(II) complex was studied for catalytic oxygen atom transfer reactions with PPh(3) using O(2) or air. Both Cr(II) complexes reacted with pyridine N-oxide and γ-terpinene to give the corresponding Cr(III) hydroxide complexes. When CpCr[(DepNCMe)(2)CH] was treated with pyridine N-oxide in benzene in the absence of hydrogen atom donors, a dimeric Cr(III) hydroxide product was isolated and structurally characterized, apparently resulting from intramolecular hydrogen atom abstraction of a secondary benzylic ligand C-H bond followed by intermolecular C-C bond formation. The use of very bulky hexaisopropylterphenyl ligand substituents did not preclude the formation of the analogous μ-oxo dimer, which was characterized by X-ray diffraction. Attempts to develop a chromium-catalyzed intermolecular hydrogen atom transfer process based on these reactions were unsuccessful. The protonolysis and reduction reactions of the μ-oxo dimer were used to improve the previously reported Cr-catalyzed radical cyclization of a bromoacetal.  相似文献   

2.
We report the synthesis, structures and magnetic properties of a series of chromium(III) metal-centered triangle (or "star") clusters, [Cr(4){RC(CH(2)O)(3)}(2)(4,4'-R'(2)-bipy)(3)Cl(6)] [R = Et, R' = H (2); R = HOCH(2), R' = H (3); R = Et, R' = (t)Bu (4)], prepared by two-step solvothermal reactions starting from [CrCl(3)(thf)(3)]. The product of the first stage of this reaction is the salt [Cr(bipy)(2)Cl(2)](2)[Cr(2)Cl(8)(MeCN)(2)] (1). In the absence of the diimine, a different family of tetrametallics is isolated: the butterfly complexes [Cr(4){EtC(CH(2)O)(3)}(2){NH(C(R)NH)(2)}(2)Cl(6)] (R = Me (5), Et (6), Ph (7)] where the chelating N-acetimidoylacetamidine NH(C(R)=NH)(2) ligands are formed in situ via condensation of the nitrile solvents (RCN) under solvothermal conditions. Magnetic measurements show the chromium stars to have an isolated S = 3 ground state, arising from antiferromagnetic coupling between the central and peripheral metal ions, analogous to the well-known Fe(III) stars. Bulk antiferromagnetic ordering is observed at 0.6 K. The butterfly complexes have a singlet ground state, with a low-lying S = 1 first excited state, due to dominant wing-body antiferromagnetic coupling.  相似文献   

3.
Free nitriles NCCH2R (1a R = CO2Me, 1b R = SO2Ph, and 1c R = COPh) with an acidic alpha-methylene react with acyclic nitrones -O+N(Me)=C(H)R' (2a R' = 4-MeC6H4 and 2b R' = 2,4,6-Me3C6H2), in refluxing CH2Cl2, to afford stereoselectively the E-olefins (NC)(R)C=C(H)R' (3a-3c and 3a'-3c'), whereas, when coordinated at the platinum(II) trans-[PtCl2(NCCH2R)2] complexes (4a R = CO2Me and 4b R = Cl), they undergo cycloaddition to give the (oxadiazoline)-PtII complexes trans-[PtCl2{N=C(CH2R)ON(Me)C(H)R'}2] (R = CO2Me, Cl and R' = 4-MeC6H4, 2,4,6-Me3C6H2) (5a-5d). Upon heating in CH2Cl2, 5a affords the corresponding alkene 3a. The reactions are greatly accelerated when carried out under focused microwave irradiation, particularly in the solid phase (SiO2), without solvent, a substantial increase of the yields being also observed. The compounds were characterized by IR and 1H, 13C, and 195Pt NMR spectroscopies, FAB+-MS, elemental analyses and, in the cases of the alkene (NC)(CO2Me)C=C(H)(4-MeC6H4) 3a and of the oxadiazoline complex trans-[PtCl2{N=C(CH2Cl)ON(Me)C(H)(4-C6H4Me)}2] 5c, also by X-ray diffraction analyses.  相似文献   

4.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

5.
We have prepared and structurally characterized several complexes of chromium coordinated by diimine (or 1,4-diazadiene) ligands, that is, Ar-N=C(R)-(R)C=N-Ar (RL(Ar)) (where Ar = 2,6-diisopropylphenyl ("iPr") or 2,6-dimethylphenyl ("Me") and R = H or Me). The reaction of CrCl2 with HLiPr gave dinuclear [(HLiPr)Cr]2(mu-Cl)3(Cl)(THF) when isolated from Et2O; in THF solution, however, the product exists as mononuclear (HLiPr)CrCl2(THF)2. Two isostructural derivatives, (MeLMe)CrCl2(THF)2 and (HL(Me))CrCl2(THF)2, have also been prepared. Furthermore, the bis-ligand complex, (HLiPr)2Cr, has been prepared along with its reduction product, Li(THF)4[(HLiPr)2Cr]. We have also synthesized the tetracarbonyl complex, (HLiPr)Cr(CO)4, by addition of HLiPr to Cr(CO)4(NCCH3)2. The structure and variable temperature magnetic susceptibility of the previously reported Cr halide dimer, [(HLiPr)Cr(mu-Cl)]2, is also discussed in detail. All of the diimine complexes have been characterized structurally, spectroscopically, and magnetically, and their electronic structures are discussed with the aid of density-functional theory calculations.  相似文献   

6.
The reaction of the 1,2,3,5-dithiadiazolyls (4-R-C(6)H(4)CN(2)S(2))(2) (R = Me, 2a; Cl, 2b; OMe, 2c; and CF3, 2d) and (3-NC-5-tBu-C(6)H(3)CN(2)S(2))(2) (2e) with [CpCr(CO)(3)](2) (Cp = eta(5)-C(5)H(5)) (1) at ambient temperature respectively yielded the complexes CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(4)R) (R = 4-Me, 3a; 4-Cl, 3b; 4-OMe, 3c; and 4-CF(3), 3d) and CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(3)-3-(CN)-5-(tBu)) (3e) in 35-72% yields. The complexes 3c and 3d were also synthesized via a salt metathesis method from the reaction of NaCpCr(CO)(3) (1B) and the 1,2,3,5-dithiadiazolium chlorides 4-R-C(60H(4)CN(2)S(2)Cl (R = OMe, 8c; CF(3), 8d) with much lower yields of 6 and 20%, respectively. The complexes were characterized spectroscopically and also by single-crystal X-ray diffraction analysis. Cyclic voltammetry experiments were conducted on 3a-e, EPR spectra were obtained of one-electron-reduced forms of 3a-e, and variable temperature 1H NMR studies were carried out on complex 3d. Hybrid DFT calculations were performed on the model system [CpCr(CO)(2)S(2)N(2)CH] and comparisons are made with the reported CpCr(CO)(2)(pi-allyl) complexes.  相似文献   

7.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

8.
The reaction of diazabutadienes of type R'N=C(R)-C(R)=NR', L (R = H, Me; R' = cycloalkyl, aryl) with Re(V)OCl(3)(AsPh(3))(2) has furnished Re(V)OCl(3)(L), 1, from which Re(III)(OPPh(3))Cl(3)(L), 2, and Re(V)(NAr)Cl(3)(L), 3, have been synthesized. Chemical oxidation of 2(R = H) by aqueous H(2)O(2) and of 3(R = H) by dilute HNO(3) has yielded Re(IV)(OPPh(3))Cl(3)(L'), 5, and Re(VI)(NAr)Cl(3)(L'), 4, respectively, where L' is the monoionized iminoacetamide ligand R'N=C(H)-C(=O)-NR'(-). Finally, the reaction of Re(V)O(OEt)X(2)(PPh(3))(2) with L has furnished bivalent species of type Re(II)X(2)(L)(2), 6(X = Cl, Br). The X-ray structures of 1 (R = Me, R' = Ph), 3 (R = H, R' = Ph, Ar = Ph), and 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl) are reported revealing meridional geometry for the ReCl(3) fragment and triple bonding in the ReO (in 1) and ReNAr (in 3 and 4 ) fragments. The cis geometry (two Re-X stretches) of ReX(2)(L)(2) is consistent with maximized Re(II)-L back-bonding. Both ReX(2)(L)(2) and Re(NAr)Cl(3)(L') are paramagnetic (S = (1)/(2)) and display sextet EPR spectra in solution. The g and A values of Re(NAr)Cl(3)(L') are, respectively, lower and higher than those of ReX(2)(L)(2). All the complexes are electroactive in acetonitrile solution. The Re(NAr)Cl(3)(L) species display the Re(VI)/Re(V) couple near 1.0 V versus SCE, and coulometric studies have revealed that, in the oxidative transformation of 3 to 4, the reactive intermediate is Re(VI)(NAr)Cl(3)(L)(+) which undergoes nucleophilic addition of water at an imine site followed by induced electron transfer finally affording 4. In the structure of 3 (R = H, R' = Ph, Ar = Ph), the Re-N bond lying trans to the chloride ligand is approximately 0.1 A shorter than that lying trans to NPh. It is thus logical that the imine function incorporating the former bond is more polarized and therefore subject to more facile nucleophilic attack by water. This is consistent with the regiospecificity of the imine oxidation as revealed by structure determination of 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl).  相似文献   

9.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

10.
Reactions of CrCl(2)(THF)(2) with N-aryl-9,10-iminophenanthraquinone in CH(2)Cl(2) give the monoimine chromium complexes (Ar)IPQCrCl(2)(THF)(2) (1, Ar = 2,6-Me(2)C(6)H(3); 2, Ar = 2,6-Et(2)C(6)H(3); 3, Ar = 2,6-(i)Pr(2)C(6)H(3)). Molecular structures of 1 and 3 were revealed to be monomeric with the chromium atoms in distorted octahedral geometries. Similar reactions of CrCl(2)(THF)(2) with N,N-bis(arylimino)phenanthrene ligands afford the diimine complexes (Ar1,Ar2)BIPCrCl(μ-Cl)(3)Cr(THF)(Ar1,Ar2)BIP (4, Ar(1) = Ar(2) = 2,6-Me(2)C(6)H(3); 5, Ar(1) = Ar(2) = 2,6-Et(2)C(6)H(3); 6, Ar(1) = Ar(2) = 2,6-(i)Pr(2)C(6)H(3); 7, Ar(1) = 2,6-Me(2)C(6)H(3), Ar(2) = 2,6-(i)Pr(2)C(6)H(3)). The X-ray diffraction analysis shows that 4, 5, and 7 are chlorine-bridged dimers with each chromium atom in a distorted octahedral geometry. Upon activation with MAO, all these complexes exhibit good catalytic activities for isoprene polymerization affording polyisoprene with predominantly a cis-1,4 unit.  相似文献   

11.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

12.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

13.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

14.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

15.
A series of mixed Cp* amidate tantalum complexes Cp*Ta(RNC(O)R')X(3) (where R = Me(2)C(6)H(3), (i)Pr, R' = (t)Bu, Ph, X = Cl, Me) have been prepared via salt metathesis and their fundamental reactivities under reducing conditions have been explored. Reaction of the tantalum chloro precursors with potassium graphite under N(2) or Ar leads to the stereoselective formation of the terminal tantalum oxo species, Cp*Ta=O(η(2)-RN=CR')Cl. This represents the formal extrusion of oxygen from the amidate ligand to the reduced tantalum center and is accompanied by the formation of the iminoacyl fragment bound to Ta(v). Amidate dinitrogen complexes, [Cp*TaCl(RNC(O)(t)Bu)](2)(μ-N(2)) (where R = Me(2)C(6)H(3), (i)Pr) were synthesized via salt metathesis from the known [Cp*TaCl(2)](2)(μ-N(2)) precursor, establishing that amidate ligands can support dinitrogen complexes, but not the reduction process often necessary for their synthesis.  相似文献   

16.
Reaction of phosphaalkenes RP=C(NMe 2 ) 2 (R = t -Bu, Me 3 Si), featuring an inverse distribution of electron density about the P--C double bond, with Fischer carbene complexes [(CO) 5 M=C(OEt)Ar] (Ar=Ph, 2-MeC 6 H 4 , 2-MeOC 6 H 4 , M = Cr, W) afforded a mixture of complexes [(CO) 5 M{P(R)=C(NMe 2 ) 2 }] and [(CO) 5 M{P(R)=C(OEt)Ar}]. The treatment of phosphaalkene HP=C(NMe 2 ) 2 with compound [(CO) 5 W=C(OEt)(2-MeOC 6 H 4 )] gives rise to the formation of an ( E / Z )-mixture of [(CO) 5 W{P(CH(NMe 2 ) 2 )=C(OEt)(2-MeOC 6 H 4 )}].  相似文献   

17.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

18.
Various sized siloxides (Cy(3)SiO > (t)Bu(3)SiO > (t)Bu(2)PhSiO > (t)Bu(2)MeSiO approximately (i)Pr(2)(t)BuSiO > (i)Pr(3)SiO > (t)Bu(2)HSiO) were used to make (R(2)R'SiO)(3)TaCl(2) (R = (t)Bu, R' = H (1-H), Me (1-Me), Ph (1-Ph), (t)Bu (1); R = (i)Pr, R' = (t)Bu (1-(i)Pr(2)); R = R' = (i)Pr (1-(i)Pr(3)); R = R' = (c)Hex (Cy)). Product analyses of sodium amalgam reductions of several dichlorides suggest that [(R(2)R'SiO)(3)Ta](2)(mu-Cl)(2) may be a common intermediate. When the siloxide is large (1-(t)Bu), formation of the Ta(III) species ((t)Bu(3)SiO)(3)Ta (6) occurs via disproportionation. When the siloxide is small, the Ta(IV) intermediate is stable (e.g., [((i)Pr(3)SiO)(3)Ta](2)(mu-Cl)(2) (2)), and when intermediate sized siloxides are used, solvent bond activation via unstable Ta(III) tris-siloxides is proposed to occur. Under hydrogen, reductions of 1-Me and 1-Ph provide Ta(IV) and Ta(V) hydrides [((t)Bu(2)MeSiO)(3)Ta](2)(micro-H)(2) (4-Me) and ((t)Bu(2)PhSiO)(3)TaH(2) (7-Ph), respectively.  相似文献   

19.
The C-Cl bonds of ortho-chlorinated benzamides Cl-ortho-C(6)H(4)C(=O)NHR (R = Me (1), nBu (2), Ph (3), (4-Me)Ph (4) and (4-Cl)Ph (5)) were successfully activated by tetrakis(trimethylphosphine)nickel(0) and tetrakis(trimethylphosphine)cobalt(0). The four-coordinate nickel(II) chloride complexes trans-[(C(6)H(4)C([double bond, length as m-dash]O)NHR)Ni(PMe(3))(2)Cl] (R = Me (6), nBu (7), Ph (8) and (4-Me)Ph (9)) as C-Cl bond activation products were obtained without coordination of the amide groups. In the case of 2, the ionic penta-coordinate cobalt(II) chloride [(C(6)H(4)C(=O)NHnBu)Co(PMe(3))(3)]Cl (10) with the [C(phenyl), O(amide)]-chelate coordination as the C-Cl bond activation product was isolated. Under similar reaction conditions, for the benzamides 3-5, hexa-coordinate bis-chelate cobalt(III) complexes (C(6)H(4)C(=O)NHR)Co(Cl-ortho-C(6)H(4)C(=O)NR)(PMe(3))(2) (11-13) were obtained via the reaction with [Co(PMe(3))(4)]. Complexes 11-13 have both a five-membered [C,N]-coordinate chelate ring and a four-membered [N,O]-coordinate chelate ring with two trimethyphosphine ligands in the axial positions. Phosphonium salts [Me(3)P(+)-ortho-C(6)H(4)C(=O)NHR]Cl(-) (R = Ph (14) and (4-Me)Ph (15)) were isolated by reaction of complexes 8 and 9 as a starting material under 1 bar of CO at room temperature. The crystal and molecular structures of complexes 6, 7 and 9-12 were determined by single-crystal X-ray diffraction.  相似文献   

20.
Pt(II)-coordinated NCNR'(2) species are so highly activated towards 1,3-dipolar cycloaddition (DCA) that they react smoothly with the acyclic nitrones ArCH=N(+)(O(-))R' (Ar/R' = C(6)H(4)Me-p/Me; C(6)H(4)OMe-p/CH(2)Ph) in the Z-form. Competitive reactivity study of DCA between trans-[PtCl(2)(NCR)(2)] (R = Ph and NR'(2)) species and the acyclic nitrone 4-MeC(6)H(4)CH=N(+)(O(-))Me demonstrates comparable reactivity of the coordinated NCPh and NCNR'(2), while alkylnitrile ligands do not react with the dipole. The reaction between trans-[PtCl(2)(NCNR'(2))(2)] (R'(2) = Me(2), Et(2), C(5)H(10)) and the nitrones proceed as consecutive two-step intermolecular cycloaddition to give mono-(1a-d) and bis-2,3-dihydro-1,2,4-oxadiazole (2a-d) complexes (Ar/R' = p-tol/Me: R'(2) = Me(2)a, R'(2) = Et(2)b, R'(2) = C(5)H(10)c; Ar/R' = p-MeOC(6)H(4)/CH(2)Ph: R'(2) = Me(2)d). All complexes were characterized by elemental analyses (C, H, N), high resolution ESI-MS, IR, (1)H and (13)C{(1)H} NMR spectroscopy. The structures of trans-1b, trans-2a, trans-2c, and trans-2d were determined by single-crystal X-ray diffraction. Metal-free 5-NR'(2)-2,3-dihydro-1,2,4-oxadiazoles 3a-3d were liberated from the corresponding (dihydrooxadiazole)(2)Pt(II) complexes by treatment with excess NaCN and the heterocycles were characterized by high resolution ESI(+)-MS, (1)H and (13)C{(1)H} spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号