首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

2.
A set S of vertices in a graph G is a dominating set of G if every vertex of V(G)?S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ(G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3,P4,P5,C5} and {P1,P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let GL be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762] showed that if G is a connected graph of order n≥8 with δ(G)≥2, then γ(G)≤2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295] showed that if G is a graph of order n with δ(G)≥3, then γ(G)≤3n/8. As an application of Reed’s result, we show that if G is a graph of order n≥14 with δ(G)≥2, then .  相似文献   

3.
Let G=(X,Y;E) be a balanced bipartite graph of order 2n. The path-cover numberpc(H) of a graph H is the minimum number of vertex-disjoint paths that use up all the vertices of H. SV(G) is called a balanced set of G if |SX|=|SY|. In this paper, we will give some sufficient conditions for a balanced bipartite graph G satisfying that for every balanced set S, there is a bi-cycle of every length from |S|+2pc(〈S〉) up to 2n through S.  相似文献   

4.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

5.
Let A(R, S) denote the class of all m×n matrices of 0's and 1's having row sum vector R and column sum vector S. The interchange graph G(R, S) is the graph where the vertices are the matrices in A(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We characterize those A(R, S) for which the graph G(R, S) has diameter at most 2 and those A(R, S) for which G(R, S) is bipartite.  相似文献   

6.
For every pair of vertices u,v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let IG[u,v] denote the set of all vertices lying on a u-v geodesic. Let SV(G) and IG[S] denote the union of all IG[u,v] for all u,vS. A subset SV(G) is a convex set of G if IG[S]=S. A convex hull [S]G of S is a minimum convex set containing S. A subset S of V(G) is a hull set of G if [S]G=V(G). The hull number h(G) of a graph G is the minimum cardinality of a hull set in G. A subset S of V(G) is a geodetic set if IG[S]=V(G). The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset FV(G) is called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called the forcing hull number fh(G) of G and the cardinality of a minimum forcing geodetic subset in G is called the forcing geodetic number fg(G) of G. In the paper, we construct some 2-connected graph G with (fh(G),fg(G))=(0,0),(1,0), or (0,1), and prove that, for any nonnegative integers a, b, and c with a+b≥2, there exists a 2-connected graph G with (fh(G),fg(G),h(G),g(G))=(a,b,a+b+c,a+2b+c) or (a,2a+b,a+b+c,2a+2b+c). These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81-94].  相似文献   

7.
Let G be a graph of order n and maximum degree Δ(G) and let γt(G) denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of Gv is less than the total domination number of G. We call these graphs γt-critical. For any γt-critical graph G, it can be shown that nΔ(G)(γt(G)−1)+1. In this paper, we prove that: Let G be a connected γt-critical graph of order n (n≥3), then n=Δ(G)(γt(G)−1)+1 if and only if G is regular and, for each vV(G), there is an AV(G)−{v} such that N(v)∩A=0?, the subgraph induced by A is 1-regular, and every vertex in V(G)−A−{v} has exactly one neighbor in A.  相似文献   

8.
Let H = F(v) ⊕ G(w) denote the graph obtained from F and G by identifying vertices v of F and w of G; H will be said to be obtained by surgery on F and G. A matching of a graph is a collection of edges, no two of which are incident with the same vertex. This paper presents a constructive characterization of the set Sk (k ≥ 2) of trees which have at least k disjoint maximum matchings. There are three types of surgery such that, for each k ≥ 2, Sk is the set of all trees obtainable from a star K1.n (nk) by a finite sequence of the specified surgical operations. A constructive characterization is also given for trees with two disjoint maximum indepent vertex sets.  相似文献   

9.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

10.
A finite graph F is a detachment of a finite graph G if G can be obtained from F by partitioning V(F) into disjoint sets S1, …, Sn and identifying the vertices in Si to form a single vertex αi for i = 1, …, n. Thus E(F) = E(G) and an edge which joins an element of Si to an element of Sj in F will join αi to αj in G. If L is a subset of E(G) then G(L) denotes the subgraph of G such that V(G(L)) = V(G), E(G(L)) = L. We call a graph almost regular if there is an integer d such that every vertex has valency d or d + 1. Suppose that E(G) is partitioned into disjoint sets E1, …, Er. Hilton [3] found necessary and sufficient conditions for the existence of a detachment F of G such that F is a complete graph with 2r + 1 vertices and F(Ei) is a Hamilton circuit of F for i = 1, …, r. We give a new proof of Hilton's theorem, which also yields a generalisation. Specifically, for any q ∈ {0, 1, …, r}, we find necessary and sufficient conditions for G to have a detachment F without loops or multiple edges such that F(E1), …, F(Er) are almost regular and F(E1), …, F(Eq) are 2-edge-connected and each vertex ξ of G arises by identification from a prescribed number g(ξ) of vertices of F.  相似文献   

11.
A local coloring of a graph G is a function c:V(G)→N having the property that for each set SV(G) with 2≤|S|≤3, there exist vertices u,vS such that |c(u)−c(v)|≥mS, where mS is the number of edges of the induced subgraph 〈S〉. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by χ?(c). The local chromatic number of G is χ?(G)=min{χ?(c)}, where the minimum is taken over all local colorings c of G. The local coloring of graphs was introduced by Chartrand et al. [G. Chartrand, E. Salehi, P. Zhang, On local colorings of graphs, Congressus Numerantium 163 (2003) 207-221]. In this paper the local coloring of Kneser graphs is studied and the local chromatic number of the Kneser graph K(n,k) for some values of n and k is determined.  相似文献   

12.
Let G be a graph. If u,vV(G), a u-vshortest path of G is a path linking u and v with minimum number of edges. The closed interval I[u,v] consists of all vertices lying in some u-v shortest path of G. For SV(G), the set I[S] is the union of all sets I[u,v] for u,vS. We say that S is a convex set if I[S]=S. The convex hull of S, denoted Ih[S], is the smallest convex set containing S. A set S is a hull set of G if Ih[S]=V(G). The cardinality of a minimum hull set of G is the hull number of G, denoted by hn(G). In this work we prove that deciding whether hn(G)≤k is NP-complete.We also present polynomial-time algorithms for computing hn(G) when G is a unit interval graph, a cograph or a split graph.  相似文献   

13.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

14.
A bicyclic graph is a connected graph in which the number of edges equals the number of vertices plus one. Let Δ(G) and ρ(G) denote the maximum degree and the spectral radius of a graph G, respectively. Let B(n) be the set of bicyclic graphs on n vertices, and B(n,Δ)={GB(n)∣Δ(G)=Δ}. When Δ≥(n+3)/2 we characterize the graph which alone maximizes the spectral radius among all the graphs in B(n,Δ). It is also proved that for two graphs G1 and G2 in B(n), if Δ(G1)>Δ(G2) and Δ(G1)≥⌈7n/9⌉+9, then ρ(G1)>ρ(G2).  相似文献   

15.
Zhiquan Hu  Hao Li 《Discrete Mathematics》2009,309(5):1020-1024
For a graph G, let σ2(G) denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let σ2(G)=). In this paper, we show the following two results: (i) Let G be a graph of order n≥4k+3 with σ2(G)≥n and let F be a matching of size k in G such that GF is 2-connected. Then GF is hamiltonian or GK2+(K2Kn−4) or ; (ii) Let G be a graph of order n≥16k+1 with σ2(G)≥n and let F be a set of k edges of G such that GF is hamiltonian. Then GF is either pancyclic or bipartite. Examples show that first result is the best possible.  相似文献   

16.
Let G=(V,E) be a graph with V={1,2,…,n}. Denote by S(G) the set of all real symmetric n×n matrices A=[ai,j] with ai,j≠0, ij if and only if ij is an edge of G. Denote by I(G) the set of all pairs (p,q) of natural numbers such that there exists a matrix AS(G) with at most p positive and q negative eigenvalues. We show that if G is the join of G1 and G2, then I(G)?{(1,1)}=I(G1K1)∩I(G2K1)?{(1,1)}. Further, we show that if G is a graph with s isolated vertices, then , where denotes the graph obtained from G be removing all isolated vertices, and we give a combinatorial characterization of graphs G with (1,1)∈I(G). We use these results to determine I(G) for every complete multipartite graph G.  相似文献   

17.
A balanced bipartition of a graph G is a bipartition V1 and V2 of V(G) such that −1≤|V1|−|V2|≤1. Bollobás and Scott conjectured that if G is a graph with m edges and minimum degree at least 2 then G admits a balanced bipartition V1,V2 such that max{e(V1),e(V2)}≤m/3, where e(Vi) denotes the number of edges of G with both ends in Vi. In this note, we prove this conjecture for graphs with average degree at least 6 or with minimum degree at least 5. Moreover, we show that if G is a graph with m edges and n vertices, and if the maximum degree Δ(G)=o(n) or the minimum degree δ(G)→, then G admits a balanced bipartition V1,V2 such that max{e(V1),e(V2)}≤(1+o(1))m/4, answering a question of Bollobás and Scott in the affirmative. We also provide a sharp lower bound on max{e(V1,V2):V1,V2 is a balanced bipartition of G}, in terms of size of a maximum matching, where e(V1,V2) denotes the number of edges between V1 and V2.  相似文献   

18.
A vertex set S in a graph G is a geodetic set if every vertex of G lies on some u?v geodesic of G, where u,vS. The geodetic number g(G) of G is the minimum cardinality over all geodetic sets of G. Let G 1 and G 2 be disjoint copies of a graph G, and let σ:V(G 1)→V(G 2) be a bijection. Then, a permutation graph G σ =(V,E) has the vertex set V=V(G 1)∪V(G 2) and the edge set E=E(G 1)∪E(G 2)∪{uvv=σ(u)}. For any connected graph G of order n≥3, we prove the sharp bounds 2≤g(G σ )≤2n?(1+△(G)), where △(G) denotes the maximum degree of G. We give examples showing that neither is there a function h 1 such that g(G)<h 1(g(G σ )) for all pairs (G,σ), nor is there a function h 2 such that h 2(g(G))>g(G σ ) for all pairs (G,σ). Further, we characterize permutation graphs G σ satisfying g(G σ )=2|V(G)|?(1+△(G)) when G is a cycle, a tree, or a complete k-partite graph.  相似文献   

19.
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α?(n-1)/2, and in particular all very well-covered graphs.  相似文献   

20.
On Group Chromatic Number of Graphs   总被引:2,自引:0,他引:2  
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For fF(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G)↦A such that for every directed edge uv from u to v, c(u)−c(v) ≠ f(uv). G is A-colorable under the orientation D if for any function fF(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order ≥m, and is denoted by χg(G). In this note we will prove the following results. (1) Let H1 and H2 be two subgraphs of G such that V(H1)∩V(H2)=∅ and V(H1)∪V(H2)=V(G). Then χg(G)≤min{max{χg(H1), maxvV(H2)deg(v,G)+1},max{χg(H2), maxuV(H1) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K3,3-minor, then χg(G)≤5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号