首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. We also analyze structured pseudospectra of a structured matrix polynomial and establish a partial equality between unstructured and structured pseudospectra. Finally, we analyze the effect of structure preserving linearizations of structured matrix polynomials on the structured backward errors of approximate eigenelements and show that structure preserving linearizations which minimize structured condition numbers of eigenvalues also minimize the structured backward errors of approximate eigenelements.  相似文献   

2.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   

3.
We introduce the quadratic two-parameter eigenvalue problem and linearize it as a singular two-parameter eigenvalue problem. This, together with an example from model updating, shows the need for numerical methods for singular two-parameter eigenvalue problems and for a better understanding of such problems.There are various numerical methods for two-parameter eigenvalue problems, but only few for nonsingular ones. We present a method that can be applied to singular two-parameter eigenvalue problems including the linearization of the quadratic two-parameter eigenvalue problem. It is based on the staircase algorithm for the extraction of the common regular part of two singular matrix pencils.  相似文献   

4.
This paper describes the algorithms and theory behind a new code for vector Sturm-Liouville problems. A new spectral function is defined for vector Sturm-Liouville problems; this is an integer valued function of the eigenparameter which has discontinuities precisely at the eigenvalues. We describe numerical algorithms which may be used to compute the new spectral function, and its use as amiss-distance function in a new code which solves automatically a large class of regular and singular vector Sturm-Liouville problems. Vector Sturm-Liouville problems arise naturally in quantum mechanical applications. Usually they are singular. The advantages of the author's code lie in its ability to solve singular problems automatically, and in the fact that the user may specify the required eigenvalue by its index.  相似文献   

5.
Given a pair of distinct eigenvalues (λ1,λ2) of an n×n quadratic matrix polynomial Q(λ) with nonsingular leading coefficient and their corresponding eigenvectors, we show how to transform Q(λ) into a quadratic of the form having the same eigenvalue s as Q(λ), with Qd(λ) an (n-1)×(n-1) quadratic matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and λ2. This block diagonalization cannot be achieved by a similarity transformation applied directly to Q(λ) unless the eigenvectors corresponding to λ1 and λ2 are parallel. We identify conditions under which we can construct a family of 2n×2n elementary similarity transformations that (a) are rank-two modifications of the identity matrix, (b) act on linearizations of Q(λ), (c) preserve the block structure of a large class of block symmetric linearizations of Q(λ), thereby defining new quadratic matrix polynomials Q1(λ) that have the same eigenvalue s as Q(λ), (d) yield quadratics Q1(λ) with the property that their eigenvectors associated with λ1 and λ2 are parallel and hence can subsequently be deflated by a similarity applied directly to Q1(λ). This is the first attempt at building elementary transformations that preserve the block structure of widely used linearizations and which have a specific action.  相似文献   

6.
Alternating matrix polynomials, that is, polynomials whose coefficients alternate between symmetric and skew-symmetric matrices, generalize the notions of even and odd scalar polynomials. We investigate the Smith forms of alternating matrix polynomials, showing that each invariant factor is an even or odd scalar polynomial. Necessary and sufficient conditions are derived for a given Smith form to be that of an alternating matrix polynomial. These conditions allow a characterization of the possible Jordan structures of alternating matrix polynomials, and also lead to necessary and sufficient conditions for the existence of structure-preserving strong linearizations. Most of the results are applicable to singular as well as regular matrix polynomials.  相似文献   

7.
We develop first order eigenvalue expansions of one-parametric perturbations of square singular matrix polynomials. Although the eigenvalues of a singular matrix polynomial P(λ) are not continuous functions of the entries of the coefficients of the polynomial, we show that for most perturbations they are indeed continuous. Given an eigenvalue λ0 of P(λ) we prove that, for generic perturbations M(λ) of degree at most the degree of P(λ), the eigenvalues of P(λ)+?M(λ) admit covergent series expansions near λ0 and we describe the first order term of these expansions in terms of M(λ0) and certain particular bases of the left and right null spaces of P(λ0). In the important case of λ0 being a semisimple eigenvalue of P(λ) any bases of the left and right null spaces of P(λ0) can be used, and the first order term of the eigenvalue expansions takes a simple form. In this situation we also obtain the limit vector of the associated eigenvector expansions.  相似文献   

8.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

9.
Summary. We present bounds on the backward errors for the symmetric eigenvalue decomposition and the singular value decomposition in the two-norm and in the Frobenius norm. Through different orthogonal decompositions of the computed eigenvectors we can define different symmetric backward errors for the eigenvalue decomposition. When the computed eigenvectors have a small residual and are close to orthonormal then all backward errors tend to be small. Consequently it does not matter how exactly a backward error is defined and how exactly residual and deviation from orthogonality are measured. Analogous results hold for the singular vectors. We indicate the effect of our error bounds on implementations for eigenvector and singular vector computation. In a more general context we prove that the distance of an appropriately scaled matrix to its orthogonal QR factor is not much larger than its distance to the closest orthogonal matrix. Received July 19, 1993  相似文献   

10.
Summary. We describe a fast matrix eigenvalue algorithm that uses a matrix factorization and reverse order multiply technique involving three factors and that is based on the symmetric matrix factorization as well as on –orthogonal reduction techniques where is computed from the given matrix . It operates on a similarity reduction of a real matrix to general tridiagonal form and computes all of 's eigenvalues in operations, where the part of the operations is possibly performed over , instead of the 7–8 real flops required by the eigenvalue algorithm. Potential breakdo wn of the algorithm can occur in the reduction to tridiagonal form and in the –orthogonal reductions. Both, however, can be monitored during the computations. The former occurs rather rarely for dimensions and can essentially be bypassed, while the latter is extremely rare and can be bypassed as well in our conditionally stable implementation of the steps. We prove an implicit theorem which allows implicit shifts, give a convergence proof for the algorithm and show that is conditionally stable for general balanced tridiagonal matrices . Received April 25, 1995 / Revised version received February 9, 1996  相似文献   

11.
Summary. We prove that the 2-norm distance from an matrix A to the matrices that have a multiple eigenvalue is equal to where the singular values are ordered nonincreasingly. Therefore, the 2-norm distance from A to the set of matrices with multiple eigenvalues is Received February 19, 1998 / Revised version received July 15, 1998 / Published online: July 7, 1999  相似文献   

12.
Summary. Let be a square matrix dependent on parameters and , of which we choose as the eigenvalue parameter. Many computational problems are equivalent to finding a point such that has a multiple eigenvalue at . An incomplete decomposition of a matrix dependent on several parameters is proposed. Based on the developed theory two new algorithms are presented for computing multiple eigenvalues of with geometric multiplicity . A third algorithm is designed for the computation of multiple eigenvalues with geometric multiplicity but which also appears to have local quadratic convergence to semi-simple eigenvalues. Convergence analyses of these methods are given. Several numerical examples are presented which illustrate the behaviour and applications of our methods. Received December 19, 1994 / Revised version received January 18, 1996  相似文献   

13.
In a recent paper, Overton and Van Dooren have considered structured indefinite perturbations to a given Hermitian matrix. We extend their results to skew-Hermitian, Hamiltonian and skew-Hamiltonian matrices. As an application, we give a formula for computation of the smallest perturbation with a special structure, which makes a given Hamiltonian matrix own a purely imaginary eigenvalue.  相似文献   

14.
Summary. We use a simple matrix splitting technique to give an elementary new proof of the Lidskii-Mirsky-Wielandt Theorem and to obtain a multiplicative analog of the Lidskii-Mirsky-Wielandt Theorem, which we argue is the fundamental bound in the study of relative perturbation theory for eigenvalues of Hermitian matrices and singular values of general matrices. We apply our bound to obtain numerous bounds on the matching distance between the eigenvalues and singular values of matrices. Our results strengthen and generalize those in the literature. Received November 20, 1996 / Revised version received January 27, 1998  相似文献   

15.
Summary. A symmetric tridiagonal matrix with a multiple eigenvalue must have a zero subdiagonal element and must be a direct sum of two complementary blocks, both of which have the eigenvalue. Yet it is well known that a small spectral gap does not necessarily imply that some is small, as is demonstrated by the Wilkinson matrix. In this note, it is shown that a pair of close eigenvalues can only arise from two complementary blocks on the diagonal, in spite of the fact that the coupling the two blocks may not be small. In particular, some explanatory bounds are derived and a connection to the Lanczos algorithm is observed. The nonsymmetric problem is also included. Received April 8, 1992 / Revised version received September 21, 1994  相似文献   

16.
The shift-and-invert method is very efficient in eigenvalue computations, in particular when interior eigenvalues are sought. This method involves solving linear systems of the form (AσI)z=b. The shift σ is variable, hence when a direct method is used to solve the linear system, the LU factorization of (AσI) needs to be computed for every shift change. We present two strategies that reduce the number of floating point operations performed in the LU factorization when the shift changes. Both methods perform first a preprocessing step that aims at eliminating parts of the matrix that are not affected by the diagonal change. This leads to about 43% and 50% flops savings respectively for the dense matrices.  相似文献   

17.
We present methods for computing a nearby partial Jordan-Schur form of a given matrix and a nearby partial Weierstrass-Schur form of a matrix pencil. The focus is on the use and the interplay of the algorithmic building blocks – the implicitly restarted Arnoldi method with prescribed restarts for computing an invariant subspace associated with the dominant eigenvalue, the clustering method for grouping computed eigenvalues into numerically multiple eigenvalues and the staircase algorithm for computing the structure revealing form of the projected problem. For matrix pencils, we present generalizations of these methods. We introduce a new and more accurate clustering heuristic for both matrices and matrix pencils. Particular emphasis is placed on reliability of the partial Jordan-Schur and Weierstrass-Schur methods with respect to the choice of deflation parameters connecting the steps of the algorithm such that the errors are controlled. Finally, successful results from computational experiments conducted on problems with known canonical structure and varying ill-conditioning are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Backward perturbation analysis of certain characteristic subspaces   总被引:15,自引:0,他引:15  
Summary This paper gives optimal backward perturbation bounds and the accuracy of approximate solutions for subspaces associated with certain eigenvalue problems such as the eigenvalue problemAx=x, the generalized eigenvalue problem Ax=Bx, and the singular value decomposition of a matrixA. This paper also gives residual bounds for certain eigenvalues, generalized eigenvalues and singular values.This subject was supported by the Swedish Natural Science Research Council and the Institute of Information Processing of the University of Umeå.  相似文献   

19.
We propose a Jacobi–Davidson type method to compute selected eigenpairs of the product eigenvalue problem Am?A1x=λx,Am?A1x=λx, where the matrices may be large and sparse. To avoid difficulties caused by a high condition number of the product matrix, we split up the action of the product matrix and work with several search spaces. We generalize the Jacobi–Davidson correction equation and the harmonic and refined extraction for the product eigenvalue problem. Numerical experiments indicate that the method can be used to compute eigenvalues of product matrices with extremely high condition numbers.  相似文献   

20.
In this paper we study two solution methods for finding the largest eigenvalue (singular value) of general square (rectangular) nonnegative tensors. For a positive tensor, one can find the largest eigenvalue (singular value) based on the properties of the positive tensor and the power-type method. While for a general nonnegative tensor, we use a series of decreasing positive perturbations of the original tensor and repeatedly recall power-type method for finding the largest eigenvalue (singular value) of a positive tensor with an inexact strategy. We prove the convergence of the method for the general nonnegative tensor. Under a certain assumption, the computing complexity of the method is established. Motivated by the interior-point method for the convex optimization, we put forward a one-step inner iteration power-type method, whose convergence is also established under certain assumption. Additionally, by using embedding technique, we show the relationship between the singular values of the rectangular tensor and the eigenvalues of related square tensor, which suggests another way for finding the largest singular value of nonnegative rectangular tensor besides direct power-type method for this problem. Finally, numerical examples of our algorithms are reported, which demonstrate the convergence behaviors of our methods and show that the algorithms presented are promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号