首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the isometry groups of Lip(X,d) and lip(X,dα) with α∈(0,1), for a compact metric space (X,d), are algebraically reflexive. We also prove that the sets of isometric reflections and generalized bi-circular projections on such spaces are algebraically reflexive. In order to achieve this, we characterize generalized bi-circular projections on these spaces.  相似文献   

2.
Let (E,E) be a dual pair of vector spaces. The paper studies general conditions which allow to lift analyticity (or K-analyticity) from the weak topology σ(E,E) to stronger ones in the frame of (E,E). First we show that the Mackey dual of a space Cp(X) is analytic iff the space X is countable. This yields that for uncountable analytic spaces X the Mackey dual of Cp(X) is weakly analytic but not analytic. We show that the Mackey dual E of an (LF)-space of a sequence of reflexive separable Fréchet spaces with the Heinrich density condition is analytic, i.e. E is a continuous image of the Polish space NN. This extends a result of Valdivia. We show also that weakly quasi-Suslin locally convex Baire spaces are metrizable and complete (this extends a result of De Wilde and Sunyach). We provide however a large class of weakly analytic but not analytic metrizable separable Baire topological vector spaces (not locally convex!). This will be used to prove that analyticity is not a three-space property but we show that a metrizable topological vector space E is analytic if E contains a complete locally convex analytic subspace F such that the quotient E/F is analytic. Several questions, remarks and examples are included.  相似文献   

3.
The present paper considers the existence of continuous roots of algebraic equations with coefficients being continuous functions defined on compact Hausdorff spaces. For a compact Hausdorff space X, C(X) denotes the Banach algebra of all continuous complex-valued functions on X with the sup norm ∥⋅. The algebra C(X) is said to be algebraically closed if each monic algebraic equation with C(X) coefficients has a root in C(X). First we study a topological characterization of a first-countable compact (connected) Hausdorff space X such that C(X) is algebraically closed. The result has been obtained by Countryman Jr, Hatori-Miura and Miura-Niijima and we provide a simple proof for metrizable spaces.Also we consider continuous approximate roots of the equation znf=0 with respect to z, where fC(X), and provide a topological characterization of compact Hausdorff space X with dimX?1 such that the above equation has an approximate root in C(X) for each fC(X), in terms of the first ?ech cohomology of X.  相似文献   

4.
Let X be a completely regular Hausdorff space and E be a locally convex Hausdorff space. Then Cb(X) ? E is dense in (Cb(X, E), β0), (Cb(X), β) ??E = (Cb(X) ? E, β) and (Cb(X), β1) ??E = (Cb(X) ? E, β1). For a separable space E, (Cb(X, E), β0) is separable if and only if X is separably submetrizable. As a corollary, for a locally compact paracompact space X, if (Cb(X, E), β0) is separable, then X is metrizable.  相似文献   

5.
For a compact Hausdorff space X, C(X) denotes the algebra of all complex-valued continuous functions on X. For a positive integer n, we say that C(X) is n-th root closed if, for each fC(X), there exists gC(X) such that f=gn. It is shown that, for each integer m?2, there exists a compact Hausdorff space Xm such that C(Xm) is m-th root closed, but not n-th root closed for each integer n relatively prime to m. This answers a question posed by Countryman Jr. [R.S. Countryman Jr., On the characterization of compact Hausdorff X for which C(X) is algebraically closed, Pacific J. Math. 20 (1967) 433-438] et al.  相似文献   

6.
For every Tychonoff space X we denote by Cp(X) the set of all continuous real-valued functions on X with the pointwise convergence topology, i.e., the topology of subspace of RX. A set P is a frame for the space Cp(X) if Cp(X)⊂PRX. We prove that if Cp(X) embeds in a σ-compact space of countable tightness then X is countable. This shows that it is natural to study when Cp(X) has a frame of countable tightness with some compactness-like property. We prove, among other things, that if X is compact and the space Cp(X) has a Lindelöf frame of countable tightness then t(X)?ω. We give some generalizations of this result for the case of frames as well as for embeddings of Cp(X) in arbitrary spaces.  相似文献   

7.
《Quaestiones Mathematicae》2013,36(3-4):303-309
Abstract

For a completely regular space X and a normed space E let Ck (x, E) (resp., Cp (x, E)) be the set of all E-valued continuous maps on X endowed with the compact-open (resp., pointwise convergence) topology. It is shown that the set of all F-valued linear continuous maps on Ck (x, E) when equipped with the topology of uniform convergence on the members of some families of bounded subsets of Ck (x, E) is a complete uniform space if F is a Band space and X is Dieudonné complete. This result is applied to prove that Dieudonné completeness is preserved by linear quotient surjections from Ck (x, E) onto Ck (Y, E) (resp., from Cp (x, E) onto Cp (x, E)) provided E, F are Band spaces and Y is a k-space.  相似文献   

8.
This paper contains both negative and positive results concerning the possibility of extending accretive sets in Banach spaces to m-accretive sets. On the one hand, it is shown that if a closed convex subset C of a reflexive strictly convex Banach space E is not a nonexpansive retract of E, then no accretive A such that clco(D(A)) = C can be extended to an m-accretive set B with D(B) ?C, and that if a non-Hilbert E is reflexive and smooth, then there is an accretive set A ?E × E which has no m-accretive extension. On the other hand, we establish positive results and then apply them to the study of the asymptotic behavior of nonlinear semigroups, the construction of zeros of accretive sets, and the characterization of invariant sets for nonlinear semigroups.  相似文献   

9.
We study the property of separability of functional space C(X) with the open-point and bi-point-open topologies and show that it is consistent with ZFC that there is a set of reals of cardinality \({\mathfrak{c}}\) such that a set C(X) with the open-point topology is not a separable space. We also show in a set model (the iterated perfect set model) that for every set of reals X, C(X) with the bi-point-open topology is a separable space.  相似文献   

10.
Let C(X,Y) be the set of all continuous functions from a topological space X into a topological space Y. We find conditions on X that make the Isbell and fine Isbell topologies on C(X,Y) equal for all Y. For zero-dimensional spaces X, we show there is a space Z such that the coincidence of the Isbell and fine Isbell topologies on C(X,Z) implies the coincidence on C(X,Y) for all Y. We then consider the question of when the Isbell and fine Isbell topologies coincide on the set of continuous real-valued functions. Our results are similar to results established for consonant spaces.  相似文献   

11.
The Isbell, compact-open and point-open topologies on the set C(X,R) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α(X) of compact families of open subsets of a topological space X. Those α(X) for which addition is jointly continuous at the zero function in Cα(X,R) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α(X) for which Cα(X,R) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, that Cα(X,R) can be strictly finer than the compact-open topology, are given. To our knowledge, this is the first example of a splitting group topology strictly finer than the compact-open topology.  相似文献   

12.
Let X be a Banach space and E be a closed bounded subset of X. For x ? X, we define D(x, E) = sup{‖ x ? e‖:e ? E}. The set E is said to be remotal (in X) if, for every x ? X, there exists e ? E such that D(x, E) = ‖x ? e‖. The object of this paper is to characterize those reflexive Banach spaces in which every closed bounded convex set is remotal. Such a result enabled us to produce a convex closed and bounded set in a uniformly convex Banach space that is not remotal. Further, we characterize Banach spaces in which every bounded closed set is remotal.  相似文献   

13.
LetX be a Hausdorff zero-dimensional topological space,K(X) the algebra of all clopen subsets of X, E a Hausdorff locally convex space over a non-Archimedean valued field and C b (X) the space of all bounded continuous -valued functions on X. The space M(K(X),E), of all bounded finitely-additive measures m: K(X) → E, is investigated. If we equip C b (X) with the topologies β o , β, β u , τ b or β ob , it is shown that, for E (compete, the corresponding spaces of continuous linear operators from C b (X) to E (are algebraically isomorphic to certain subspaces of M(K(X),E). The text was submitted by the author in English.  相似文献   

14.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

15.
This study looks at some subgroups of the group H(C(X)) of homeomorphisms on the space C(X) of continuous real-valued functions on a topological space X, where C(X) has the compact-open topology. The main result shows that, for certain spaces X, the subgroup of H(C(X)) generated by the algebraic and vertical homeomorphisms on C(X) is dense in H(C(X)) with the pointwise topology. Also, for X equal to the unit interval, a subgroup of H(C(X)) is developed using integration of the members of C(X), and this subgroup is used as an example and to illustrate certain properties that subgroups of H(C(X)) can have.  相似文献   

16.
A well-known result due to H. Corson states that, for any covering τ by closed bounded convex subsets of any Banach space X containing an infinite-dimensional reflexive subspace, there exists a compact subset C of X that meets infinitely many members of τ. We strengthen this result proving that, even under the weaker assumption that X contains an infinite-dimensional separable dual space, an (algebraically) finite-dimensional compact set C with that property can always be found.  相似文献   

17.
It is proved that C(K,E) (the space of all continuous functions on a Hausdorff compact space K taking values in a Banach space E) admits an equivalent locally uniformly rotund norm if C(K) and E do so. Moreover, if the equivalent LUR norms on C(K) and E are lower semicontinuous with respect to some weak topologies, the LUR norm on C(K,E) can be chosen to be lower semicontinuous with respect to an appropriate weak topology. As a consequence we prove that if X and Y are two Hausdorff compacta and C(X), C(Y) admit equivalent (pointwise lower semicontinuous) LUR norms, then so does C(X×Y).  相似文献   

18.
Let Γ denote an uncountable set. We consider the questions if a Banach space X of the form C(K) of a given class (1) has a complemented copy of c0(Γ) or (2) for every c0(Γ)⊆X has a complemented c0(E) for an uncountable EΓ or (3) has a decomposition X=AB where both A and B are nonseparable. The results concern a superclass of the class of nonmetrizable Eberlein compacts, namely Ks such that C(K) is Lindelöf in the weak topology and we restrict our attention to Ks scattered of countable height. We show that the answers to all these questions for these C(K)s depend on additional combinatorial axioms which are independent of ZFC ± CH. If we assume the P-ideal dichotomy, for every c0(Γ)⊆C(K) there is a complemented c0(E) for an uncountable EΓ, which yields the positive answer to the remaining questions. If we assume ♣, then we construct a nonseparable weakly Lindelöf C(K) for K of height ω+1 where every operator is of the form cI+S for cR and S with separable range and conclude from this that there are no decompositions as above which yields the negative answer to all the above questions. Since, in the case of a scattered compact K, the weak topology on C(K) and the pointwise convergence topology coincide on bounded sets, and so the Lindelöf properties of these two topologies are equivalent, many results concern also the space Cp(K).  相似文献   

19.
For a Tychonoff space X, we obtain a criterion of the σ-countable compactness of the space of continuous functions C(X) with the set-open topology. In particular, for the class of extremally disconnected spaces X, we prove that the space C λ(X) is σ-countably compact if and only if X is a pseudocompact space, the set X(P) of all P-points of the space X is dense in X, and the family λ consists of finite subsets of the set X(P).  相似文献   

20.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号