首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solitary and Periodic Solutions of Nonlinear Nonintegrable Equations   总被引:2,自引:0,他引:2  
The singular manifold method and partial fraction decomposition allow one to find some special solutions of nonintegrable partial differential equations (PDE) in the form of solitary waves, traveling wave fronts, and periodic pulse trains. The truncated Painlevé expansion is used to reduce a nonlinear PDE to a multilinear form. Some special solutions of the latter equation represent solitary waves and traveling wave fronts of the original PDE. The partial fraction decomposition is used to obtain a periodic wave train solution as an infinite superposition of the "corrected" solitary waves.  相似文献   

2.
We study the evolution of small-amplitude water waves when the fluid motion is three dimensional. An isotropic pseudodifferential equation that governs the evolution of the free surface of a fluid with arbitrary, uniform depth is derived. It is shown to reduce to the Benney-Luke equation, the Korteweg-de Vries (KdV) equation, the Kadomtsev-Petviashvili (KP) equation, and to the nonlinear shallow water theory in the appropriate limits. We compute, numerically, doubly periodic solutions to this equation. In the weakly two-dimensional long wave limit, the computed patterns and nonlinear dispersion relations agree well with those of the doubly periodic theta function solutions to the KP equation. These solutions correspond to traveling hexagonal wave patterns, and they have been compared with experimental measurements by Hammack, Scheffner, and Segur. In the fully two-dimensional long wave case, the solutions deviate considerably from those of KP, indicating the limitation of that equation. In the finite depth case, both resonant and nonresonant traveling wave patterns are obtained.  相似文献   

3.
This paper is concerned with the existence of traveling wave fronts for delayed non-local diffusion systems without quasimonotonicity, which can not be answered by the known results. By using exponential order, upper-lower solutions and Schauder's fixed point theorem, we reduce the existence of monotone traveling wave fronts to the existence of upper-lower solutions without the requirement of monotonicity. To illustrate our results, we establish the existence of traveling wave fronts for two examples which are the delayed non-local diffusion version of the Nicholson's blowflies equation and the Belousov-Zhabotinskii model. These results imply that the traveling wave fronts of the delayed non-local diffusion systems without quasimonotonicity are persistent if the delay is small.  相似文献   

4.
Oscillatory dispersive waves propagating in a slowly varying medium are analyzed for Klein-Gordon equations with perturbations. The method of multiple scales is extended to include two fast scales, the usual traveling-wave phase and time, in order to allow initial conditions not usually permitted. An exact wave-action equation is introduced if the traveling wave is stable, involving averages over the periodic wave as well as time. This is equivalent to an extended averaged Lagrangian principle. The equation for the slow modulations of the phase shift of the traveling wave is derived from the higher order terms in the exact action equation and is shown to be the same as in earlier more restrictive studies.  相似文献   

5.
An extended auxiliary equation method for exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. This, together with a convenient characterization, affords new exact traveling wave solutions of some classes of nonlinear power law diffusion equations to be obtained.  相似文献   

6.
谢溪庄 《数学研究》2011,44(2):206-213
构造并研究一类具有非局部时滞和非线性种内制约关系的竞争系统的反应扩散模型.利用Wang,Li和Ruan建立的非局部时滞反应扩散方程组波前解存在性的理论,证明了连接两个边界平衡解的行波解的存在性.  相似文献   

7.
This paper deals with entire solutions and the interaction of traveling wave fronts of bistable reaction-advection-diffusion equation with infinite cylinders. Assume that the equation admits three equilibria: two stable equilibria 0 and 1, and an unstable equilibrium θ. It is well known that there are different wave fronts connecting any two of those three equilibria. By considering a combination of any two of those different traveling wave fronts and constructing appropriate subsolutions and supersolutions, we establish three different types of entire solutions. Finally, we analyze a model for shear flows in cylinders to illustrate our main results.  相似文献   

8.
An analysis of traveling wave solutions of partial differential equation (PDE) systems with cross-diffusion is presented. The systems under study fall in a general class of the classical Keller–Segel models to describe chemotaxis. The analysis is conducted using the theory of the phase plane analysis of the corresponding wave systems without a priory restrictions on the boundary conditions of the initial PDE. Special attention is paid to families of traveling wave solutions. Conditions for existence of front–impulse, impulse–front, and front–front traveling wave solutions are formulated. In particular, the simplest mathematical model is presented that has an impulse–impulse solution; we also show that a non-isolated singular point in the ordinary differential equation (ODE) wave system implies existence of free-boundary fronts. The results can be used for construction and analysis of different mathematical models describing systems with chemotaxis.  相似文献   

9.
This paper concerns with the traveling wave solutions of a nonlinear reaction-diffusion-advection model for describing the spatiotemporal evolution of bacterial colony pattern. We use different methods for computing the traveling wave fronts of the model equations. One of the methods involves the traveling wave equations. Numerical solutions of these equations as an initial-value problem lead to accurate computations of the wave profiles and speeds. The second method is to construct the time-dependent solutions by solving an initial-moving boundary-value problem for the PDE system, showing an approximation for such wave fronts, in particular, the minimum speed traveling wave.  相似文献   

10.
Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程, 再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组, 求解非线性代数方程组就能直接得到非线性偏微分方程的行波解.对Davey-Stewartson方程应用这种方法, 得到了该方程的精确行波解.同时也得到了该方程的一个Backlund变换.所得结果与首次积分法的结果作了比较.Riccati-Bernoulli辅助常微分方程方法是一种简单、有效地求解非线性偏微分方程精确解的方法.  相似文献   

11.
The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier-Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.  相似文献   

12.
In this paper the minimal-speed determinacy of traveling wave fronts of a two-species competition model of diffusive Lotka–Volterra type is investigated. First, a cooperative system is obtained from the classical Lotka–Volterra competition model. Then, we apply the upper-lower solution technique on the cooperative system to study the traveling waves as well as its minimal-speed selection mechanisms: linear or nonlinear. New types of upper and lower solutions are established. Previous results for the linear speed selection are extended, and novel results on both linear and nonlinear selections are derived.  相似文献   

13.
We obtain some existence results for traveling wave fronts and slowly oscillatory spatially periodic traveling waves of planar lattice differential systems with delay. Our approach is via Schauder's fixed-point theorem for the existence of traveling wave fronts and via S1-degree and equivarant bifurcation theory for the existence of periodic traveling waves. As examples, the obtained abstract results will be applied to a model arising from neural networks and explicit conditions for traveling wave fronts and global continuation of periodic waves will be obtained.  相似文献   

14.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

15.
The one-dimensional (1D) generalized modified complex Ginzburg–Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painlevé test for integrability in the formalism of Weiss–Tabor–Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schrödinger equation and the 1D generalized real modified Ginzburg–Landau equation. We obtain that the one parameter family of traveling localized source solutions called “Nozaki–Bekki holes” become a subfamily of the dark soliton solutions in the 1D generalized modified Schrödinger limit.  相似文献   

16.

The main aim of this paper is to study the exact traveling wave solutions of the generalized Kudryashov–Sinelshchikov equation by using the auxiliary equation method based on the conclusion of qualitative analysis. The advantage of this method is to choose the effective and proper auxiliary equation on the base of the behaviors and traits of solutions revealed by analysis of phase portraits to study the solution of differential equations. By applying the proposed approach to the generalized Kudryashov–Sinelshchikov equation, the number, behavior and existence of smooth and non-smooth traveling wave solutions are gained, at the same time, the new exact smooth solitary, periodic wave solutions and cusp solitary, periodic wave solutions are obtained. From the dynamic point of view, the behavior of traveling wave solutions is analyzed. The profile,type and the form of exact expression of traveling wave solutions are influenced by the order of nonlinear term and nonlinear terms.

  相似文献   

17.
In this paper, we establish the existence and the nonlinear stability of traveling wave solutions to a system of conservation laws which is transformed, by a change of variable, from the well-known Keller-Segel model describing cell (bacteria) movement toward the concentration gradient of the chemical that is consumed by the cells. We prove the existence of traveling fronts by the phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without the smallness assumption on the wave strengths by the method of energy estimates.  相似文献   

18.
This paper considers a completely integrable nonlinear wave equation which is called Qiao equation. The equation is reduced via Lie symmetry analysis. Two classes of new exact group-invariant solutions are obtained by solving the reduced equations. Specially, a novel technique is proposed for constructing group-invariant solutions and non-group-invariant solutions based on travelling wave solutions. The obtained exact solutions include a set of traveling wave-like solutions with variable amplitude, variable velocity or both. Nonlocal conservation laws of Qiao equation are also obtained with the corresponding infinitesimal generators.  相似文献   

19.
In this paper, an analytical method is proposed to construct explicitly exact and approximate solutions for nonlinear evolution equations. By using this method, some new traveling wave solutions of the Kuramoto-Sivashinsky equation and the Benny equation are obtained explicitly. These solutions include solitary wave solutions, singular traveling wave solutions and periodical wave solutions. These results indicate that in some cases our analytical approach is an effective method to obtain traveling solitary wave solutions of various nonlinear evolution equations. It can also be applied to some related nonlinear dynamical systems.  相似文献   

20.
研究了一类含有五次非线性反应项和常数扩散项的反应扩散方程的小振幅孤立周期波解,以及它的行波方程局部临界周期分支问题.运用行波变换将反应扩散方程转换为对应的行波系统,应用奇点量方法和计算机代数软件MATHEMATICA计算出该系统的前8个奇点量,得到该系统奇点的两个中心条件,并证明行波系统原点处可分支出8个极限环,对应的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号