首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We investigate the homogenization limit of a free boundary problem with space-dependent free boundary velocities. The problem under consideration has a well-known obstacle problem transformation, formally obtained by integrating with respect to the time variable. By making rigorous the link between these two problems, we are able to derive an explicit formula for the homogenized free boundary velocity, and we establish the uniform convergence of the free boundaries.  相似文献   

2.
We use the method of the topological degree, the theory of fractional powers of positive operators, and the Grisvard formula together with results proved by G. Raugel and G. R. Sell to study the periodic solutions of the incompressible Navier–Stokes equations in a thin three-dimensional domain.  相似文献   

3.
The effect of internal heat source on convection in a layer of fluid in a porous medium was analyzed using linear and nonlinear analysis, and boundaries are assumed to be stress-free and isothermal. Normal mode technique is used for linear analysis, and energy method is used for nonlinear stability analysis. The presence of heat generation leads to the possibility of the existence of a subcritical instability. Effects of increase of Darcy–Brinkman number and internal heat parameter on critical Rayleigh numbers were analyzed numerically using Chebyshev pseudospectral method.  相似文献   

4.
A conjugate problem of radiative–convective heat transfer in a turbulent hightemperature gasdisperse flow around a thermally thin ablating plate is considered. The plate experiences intense radiative heating by an external source, which is a blackbody. The temperature fields and the distributions of heat fluxes along the plate under unsteady conditions are calculated. The data gained make it possible to examine the effect of the Stark number and phasetransition heat in the plate material on the time evolution of the thermal state of the boundarylayer medium and the plate itself being heated by a hightemperature radiation source.  相似文献   

5.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

6.
Ironmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas–solid flow in an oxygen blast furnace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (SIG) flowrate to total gas flowrate on the SIG penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.  相似文献   

7.
In our previous work [Gao, C.F., Mai, Y.W., Zhang, N., 2010. Solution of a crack in an electrostrictive solid. International Journal of Solids and Structures 47, 444–453.] the intensity factor of the total stress for an impermeable crack is directly written by using the corresponding result of a permeable crack. This is based on the fact that an impermeable crack can be considered as a special case of a permeable crack where the electric field is not zero. However, the singularity of total stresses for the impermeable crack can also be analyzed directly from the complex potentials. In this Corrigendum, the singularity of the total stresses is further studied for the impermeable crack, and the intensity factors are re-derived by using the obtained complex potentials. It is shown that for an impermeable crack, the total stresses still have an inverse square-root singularity but their intensity factor is different from that obtained by the solution of a permeable crack. Therefore, it is concluded that solutions for impermeable cracks cannot be obtained directly from those of permeable cracks, since the assumption of the electric boundary condition has not only influenced the electric fields on the crack-faces but also on the electric body force inside the material.  相似文献   

8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号