首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the metallacarborane cations [(-9-Me2S-7,8-C2B9H10)Ni(-Cp)Ni(-9-Me2S-7,8-C2B9H10)]+ (2) and [Cp*Ru(Me2S-C2B9H10)RuCp*]+ (4b) were established by X-ray diffraction analysis. These results confirmed the triple-decker structure proposed for complex 2 earlier, whereas complex 4b proved to be 13-vertex dimetallacarborane rather than the triple-decker complex, as has been suggested earlier.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1879–1883, September, 2004.  相似文献   

2.
Cobaltacarboranes (η1, η3-cyclooctenediyl)Co(Carb) (Carb = η-9-SMe2-7,8-C2B9H10, η-1-tBuHN-1,7,9-C3B8H10) were synthesized by the reaction of the carborane anions [Carb] with the acetonitrile complex [(η1, η3-cyclooctenediyl)Co(MeCN)3]+ generated in situ upon the dissolution of [(η1, η3-cyclooctenediyl)Co(η-1,4-C6H4Me2)]+ in MeCN. The structures of (η13-cyclooctenediyl)Co(η-9-SMe2-7,8-C2B9H10 and [(η22-cyclooctadiene)Co((η-1,2,4,5-C6H2Me4)]BF4 were determined by X-ray diffraction analysis.  相似文献   

3.
Single crystal XRD is used to study the crystal structure of a new compound containing the dicarbollyl cluster anion Co(III) with the composition [CuPhen3][Co(C2B9H11)2]2·CH3CN, where Phen is 1,10-phenanthroline. The crystallographic data: C46H71B36N7Co2Cu, M = 1292.66, monoclinic system, P21/c space group, unit cell parameters a = 14.7178(2) ?, b = 19.5640(4) ?, c = 22.8663(5) ?, β = 106.6601(7)°, V = 6307.75(33) ?3, Z = 4, d x = 1.361 g/cm3, T = 100 K, μ = 0.90 mm−1. The structure is solved by the direct method and refined by the full-matrix LSM in an anisotropic-isotropic (for H atoms) approximation up to the final agreement factors R 1 = 0.0370, wR 2 = 0.0869 for 13,807 I hkl ≥ 2 σ I out of 18,295 measured I hkl . The structure consists of [CuPhen3] cations, Co(C2B9H11)2 anions, and acetonitrile molecules MeCN. The central Cu atom in the cation in the general position, and its coordination geometry is a distorted extended octahedron formed by six nitrogen atoms of the three bidentate Phen ligands. The coordination of Cu(II) in the cation is (2+2+2) with two long axial and four shorter equatorial Cu-N bonds, whose average lengths are 2.239(2) ? and 2.077(1) ? respectively. Each anion has its own position of the -C2-groups; for Co(1), it is a quasi-gauche-configuration; for Co(2), a quasi-trans-configuration.  相似文献   

4.
Visible light irradiation of the benzene complex [(η-1-ButNH-1,7,9-C3B8H10)Fe(η-C6H6)]+ in the presence of the charge-compensated carborane anions [9-L-7,8-C2B9H10] (L = SMe2, NMe3) affords ferracarboranes (η-1-ButNH-1,7,9-C3B8H10)Fe(η-9-L-7,8-C2B9H10). Their structures were established by X-ray diffraction analysis.  相似文献   

5.
The reaction of the iodide complex [(η5-C9H2Me5)RhI2]2 (1) or the acetonitrile complex [(η5-C9H2Me5)Rh(MeCN)3]2+ with Tl[Tl(η-7,8-C2B9H11)] afforded rhodacarborane (η5-C9H2Me5)Rh(7,8-C2B9H11) (2). The cationic triple-decker complex with the bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H3Me2BMe)Rh(η5-C9H2Me5)]2+ (3) was synthesized by the reaction of the nitromethane solvate [(η5-C9H2Me5)Rh(MeNO2)3]2+ with the sandwich compound Cp*Fe(η-C5H3Me2BMe). The structure of 2 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1623–1625, August, 2008.  相似文献   

6.
Reaction of the neutral tricarbaborane nido-7,8,9-C3B8H12 (1) with triethylamine in CH2Cl2 led to quantitative deprotonation and isolation of the corresponding Et3NH+ salt of the [nido-7,8,9-C3B8H11] anion (2). This was converted into PSH+ and Me4N+ salts via metathetic cation exchange. Heating of the solid Me4N+[7,8,9-C3B8H11] in mineral oil at 350 °C for 2 h resulted in thermal rearrangement and isolation of the cage isomeric compound Me4N+[7,8,10-C3B8H11]. Finally, compound 1 was directly complexed via reaction with [CpFe(CO)2]2 (Cp = η5-C5H5) to generate the ferratricarbollide sandwich [1-Cp-closo-1,2,4,10-FeC3B8H11] (4) in 60% yield. The structures of all the generic compounds of tricarbollide chemistry, 1 (PSH+ salt), 2 (MePPh3+salt), and 4, were established unambiguously by an X-ray diffraction analysis.  相似文献   

7.
The aldol condensation reaction between [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] and a range of aromatic aldehydes [RCHO] and [RCHCH-CHO] gives a series of α,β-unsaturated ketones [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-R}] and [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-CHCH-R}] (3). The reaction is promoted by various bases: NaH proved to be the most effective whilst nBuLi gave [Co(η4-C4Ph4){η5-C5H4C(OH)(nBu)CH3}] as the major product. NaOH was ineffective, perhaps indicating that that the methyl protons in [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] are less acidic than those in [Fe(η5-C5H5){η5-C5H4C(O)CH3}]. Compounds 3 were characterised spectroscopically. Their 1H NMR spectra are consistent with a trans configuration about their CC bond, and this was confirmed by X-ray crystallography in five cases, which showed that all have the same basic structure with parallel cyclobutadiene and cyclopentadienyl ligands, but they are not identical. The C5H4C(O)(CHCH)n-R (n = 1 or 2) moieties show little evidence for delocalisation and often deviate from planarity. The UV/Vis spectra of those 3 with smaller aromatic rings (R = C6H5, 4-C6H4NMe2, 2-C4H3S and 1-C10H7) suggest that these are donor-π-acceptor systems, but as the annellation of R increases (R = 9-C14H9, 1-C16H9 and 1-C20H11) the spectra increasingly resemble those of the parent polycyclic aromatic hydrocarbon, RH. Reduction of [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-C10H7-1}] with DIBAL gives a mixture of [Co(η4-C4Ph4){η5-C5H4C(O)CH2CH2-C10H7-1}] and [Co(η4-C4Ph4){η5-C5H4CH(OH)CHCH-C10H7-1}]. A minor product from the preparation of [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] was shown by X-ray crystallography to be the η4-butadiene complex [Co{η4-Ph(H)CC(Ph)-C(Ph)C(H)Ph}{η5-C5H4C(O)CH3}].  相似文献   

8.
The fulvene complexes [(η6-C5Me4CH2)Re(CO)2(R)] (1a, RI; 1b, RC6F5) react at the exocyclic methylene carbon with a vinylmagnesium bromide solution to produce the anionic species [(η5-C5Me4CH2CHCH2)Re(CO)2(R)]. Protonation with HCl at 0 °C produces the hydride complexes [trans-5-C5Me4CH2CHCH2)Re(CO)2(R)(H)] (2a, RI; 2b, RC6F5). Thermolysis of an hexane solution of the iodo-hydride (2a) under a CO atmosphere yields the complex [(η5-C5Me4CH2CHCH2)Re(CO)3] (3) and [Re(CO)5I] as by-product. Thermolysis of 2b produced three new products, mainly the chelated complex [(η52-C5Me4CH2CHCH2)Re(CO)2] (4) and complex 3, with a non-coordinated olefin group, in moderated yield, and traces of [Re(CO)5(C6F5)]. Thermolysis of an hexane solution of 2 in presence of an excess of PMe3, afforded the phosphine derivative [(η5-C5Me4CH2CHCH2)Re(CO)2(PMe3)] (5). All the complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopies and mass spectrometry. The molecular structure of 4 has also been determined. The molecule exhibits a formal three-legged piano-stool structure, with two CO groups, and the third position corresponding to the η2-coordination of the propenyl side arm of the η5-C5Me4 ring.  相似文献   

9.
The room-temperature metallation reactions of the K+ salt of the [7,8-(PhCH2)2-7,8-nido-C2B9H10] anion (1) with the COD-metal μ-chloride dimers [(η4-C8H12)2Rh2(μ-Cl)2] (2) and [(η4-C8H12)2Ir2(μ-Cl)2] (3) in benzene/ethanol solution gave formally 16-electron pseudocloso-type complexes with the η3-cyclooctenyl ligand at the metal vertices, [3-{(1-3-η3)-C8H13}-1,2-(PhCH2)2-pseudocloso-3,1,2-MC2B9H9] [4, M = Rh(III); 5, M = Ir(III)]. No evidence supporting the existence of an agostic C-H?M bonding interaction in these compounds was obtained either from the crystallographic or the phase-sensitive 2-D [1H-1H] NOESY/EXSY studies of 4. The extraordinary stability of complexes 4 and 5 can therefore be associated with their cage-deformed cluster structures, where electronically-deficient (16-electron) metal centers are believed to be stabilized by additional electron density released from the polyhedral C-C bond cleavage. DFT solid-state calculations performed for closo (18-electron) and pseudocloso (16-electron) Rh(III) complexes, [3-(η5-C5Me5)-1,2-(PhCH2)2-closo-3,1,2-RhC2B9H9] (6, C-C, 1.7397 Å) and [3-{(1-3-η3)-C8H13}-1,2-(4′-MeC6H4)2-pseudocloso-3,1,2-RhC2B9H9] (9, C?C, 2.420(2) Å), showed that the electron density transfer from the carborane moiety to the rhodium center is marginally greater for complex 9, in accordance with the idea that electronics rather than sterics play a crucial role in the stabilization of 16-electron pseudocloso-metallacarborane species.  相似文献   

10.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

11.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

12.
The pressure dependences (dν/dP) of the main IR and Raman bands of Zeise’s complexes, K[Pt(η2-C2H4)Cl3] and [Pt(η2-C2H4)Cl2]2, have been determined for the first time for selected pressures up to ∼33 kbar with the aid of diamond-anvil cells. Neither complex undergoes a pressure-induced structural change throughout the pressure range investigated. The dν/dP values range from −0.13 to 0.79 cm−1 kbar−1. The negative values have proved particularly informative in identifying the location of the CC stretching modes of the Pt-ethylene groups, a topic of considerable disagreement in the literature.  相似文献   

13.
Reaction of [(CpV)2(B2H6)2], 1 (Cp = η5-C5H5) with four equivalents of [Co2(CO)8] or [Co4(CO)12] in hexane at 70 °C leads to the isolation of the tetranuclear carbonyl cluster, [(η6-C6H5OCo)Co3(CO)9], 2 in modest yield. The geometry of 2 is similar to that of [Co4(CO)12] where all the four Co atoms are arranged in a tetrahedral geometry. The apical cobalt atom in 2 is coordinated to C6H5O ring in a η6-fashion and the other three cobalt atoms are each coordinated to three carbonyl ligands. Compound 2 has been characterized in solution by IR, 1H, 13C NMR and mass spectrometry and the structural types were unequivocally established by crystallographic analysis.  相似文献   

14.
15.
The benzene complex [1-(η-C6H6)-12-ButNH-1,2,4,12-FeC3B8H10]+ (3a) was synthesized by the photochemical reaction of [(η5-C6H7)Fe(η-C6H6)]+ (1) with the anion [7-ButNH-7,8,9-C3B8H10] followed by the treatment of ferracarborane 1-(η5-C6H7)-12-ButNH-1,2,4,12-FeC3B8H10 (2) with hydrochloric acid. The benzene ligand in cation 3a is replaced by alkyl-substituted benzenes under visible light irradiation in CH2Cl2 to form [1-(η-C6R6)-12-ButNH-1,2,4,12-FeC3B8H10]+ (3b–e; C6R6 is toluene (b), mesitylene (c), hexamethylbenzene (d), or anisole (e)). The structure of [3c]PF6 was established by X-ray diffraction.  相似文献   

16.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

17.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

18.
19.
[(η5-C5H5)ZrCl3] reacts with [C5H4CH2CH2NMe2]Li yielding the coordination polymer [(C5H5)(C5H4CH2CH2NMe2)ZrCl2]n (1) as a brown solid which is very sensitive to moisture. The reaction of 1 with 1.35 equivalent of HCl (methanolic solution) yields pale yellow green crystals of [(η5-C5H5)(η5-C5H4CH2CH2NHMe2)ZrCl2]2[ZrCl6] (2). Compound 2 was fully characterized on the basis of NMR data and X-ray crystal structure analysis. The formation of this product indicates the elimination of C5H4CH2CH2NMe2 as well as C5H5 ligands from the Zr(IV) metal centre.  相似文献   

20.
The structure and dynamic behavior of complex [(η5-C5H4CH3)Cr(CO)2(μ-SBu)Pt(PPh3)2] in solution was studied by multinuclear (1H, 13C, 31P) NMR spectroscopy including a phase-sensitive NOESY experiment. Increasing temperature causes rupture of the Cr-Pt bond in the three-membered ring of the complex and rotation of the S-Pt(PPh3)2 unit around the Cr-S bond line, followed by formation of a new Cr-Pt bond to close the ring. All activation parameters for this dynamic process have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号