首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.  相似文献   

2.
We have studied the charging of dust particles in a dense photoresonant sodium plasma with electron and ion densities as high as 1016 cm?3 produced by laser pumping of the resonance level of Na, which was a small admixture (up to 1%) in an argon buffer gas. We show that the charge of dust particles with a radius of 10 mm at maximum reaches 3 × 105 electron charges and that the potential of the dust particles at a low electron bulk loss rate agrees well with the orbital motion limited (OML) model data. The behavior of the electric field near a dust particle was found to be nonmonotonic. We established that the distribution of the potential near a solitary charged dust particle agrees well with the Debye one, but the screening length proves to be much larger than even the electron Debye length; the discrepancies are largest at the afterglow stage of the photoresonant plasma, when the sodium ion with a low recombination coefficient is the main plasma ion. We determined the domain of parameters for a dense plasma where an ensemble of dust particles can crystallize.  相似文献   

3.
《中国物理 B》2021,30(10):104101-104101
Charged photovoltaic glass produces an electrostatic field. The electrostatic field exerts an electrostatic force on dust particles, thus making more dust particles deposited on the glass. In this paper, the contact electrification between the deposited dust particles and the photovoltaic glass is studied. Meanwhile, the surface charge density model of the photovoltaic glass and the electrostatic force of charged particles are analyzed. The results show that with the increasing of the particle impact speed and the inclination angle of the photovoltaic panel, the charges on particles increase to different degrees.Under a given condition, the electrostatic forces acting on the charged particles at different positions above the glass plate form a bell-shaped distribution at a macro level, and present a maximum value in the center of the plate. As the distance between the particle and the charged glass decreases, the electrostatic force exerted on the particle increases significantly and fluctuates greatly. However, its mean value is still higher than the force caused by gravity and the adhesion force,reported by some studies. Therefore, we suggest that photovoltaic glass panels used in the severe wind-sand environment should be made of an anti-static transparent material, which can lessen the dust particles accumulated on the panels.  相似文献   

4.
Examines the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite directions and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, the necessary and sufficient conditions for a stable dust sheath are found. The authors consider conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas  相似文献   

5.
Self-consistent molecular-dynamics calculations of the charge of micron-size particles in a low-pressure gas-discharge plasma are performed. It is shown that charge exchange of ions on neutrals starts to affect the charge of dust particles at pressures corresponding to ion mean free paths much greater than the Debye radius. The computational results show that the potential of a particle depends nonmonotonically on the pressure and on the particle size.  相似文献   

6.
The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400–500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.  相似文献   

7.
Based on the contact charge transfer model between two particles due to a single collision proposed by Apodaca, the contact charges carried on a particle is derived due to multiple collisions, including the repeat collisions between two particles and the collisions with different particles, in mixed-size granular system of identical material. The effect of the particle size on the charges carried on the particle is simulated. The results indicate that for a mixed-size granular system, due to multiple collisions among particles, there exists a threshold particle radius, the particles with radius higher than which and the particles with radius lower than which carry opposite charges. The threshold particle radius is equal to mean value of particle size in the mixed-size granular system. Basically, the polarity of the charges carried on the largest particle is same as the polarity of the transfer charge carrier, and in case of the positive charge transferred, the largest particle will be positively charged and the smallest particle will be negatively charged, and vice versa. In the same size region, the more dispersive the particle size is, the more the net charges can be produced. In normal-distributed granular system, the magnitude of contact charge is determined mainly by the particle size distribution, size region, total particle number and the relative impact velocity.  相似文献   

8.
赵晓云  张丙开  张开银 《物理学报》2013,62(17):175201-175201
采用流体方程和尘埃充电自洽模型研究了鞘边含有两种尘埃颗粒的等离子体玻姆判据. 通过拟牛顿法数值模拟了鞘边两种尘埃颗粒的存在对尘埃自身充电以及离子马赫数的影响. 两种尘埃颗粒中含量较少的尘埃颗粒数密度的增加, 导致两种尘埃颗粒表面悬浮势一个降低, 一个升高. 含量较少的尘埃颗粒的数密度越多和半径越小, 都会导致离子马赫数增大. 另外鞘边无论何种尘埃颗粒的速度增加, 鞘边离子马赫数都将减小. 关键词: 等离子体鞘层 尘埃颗粒 玻姆判据  相似文献   

9.
《Physics letters. A》2019,383(27):125853
Numerical study of the effect of dust particle concentration on the thermophoretic force acting on a dust particle inside a dust structure in plasma has been carried out. The experimental data on the formation of voids in dust structures formed by 2.55 μm dust particles in a glow dc discharge in neon have been used. The simulation has been performed using the diffusion-drift model with taking into account joule heating of discharge. The dependence of the thermophoretic force acting on a dust particle in a dust structure on the ratio of atom mean free path to the distance between the adjacent particles in the dust structure has been obtained.  相似文献   

10.
For like-charged colloidal particles, two mechanisms of attraction between them survive when the interparticle distance is larger than the Debye screening length. One of them is the conventional van der Waals attraction and the second is the attraction mechanism mediated by thermal fluctuations of particle position. The latter is related to the effective variable mass (Euler mass) of the particles produced by the fluid motion. The strongest attraction potential (up to the value of the temperature T) corresponds to the case of uncharged particles and a relatively large Debye screening length. In this case, the third attraction mechanism is involved. It is mediated by thermal fluctuations of the fluid density.  相似文献   

11.
The interaction of two macroparticles in a nonequilibrium plasma at elevated pressures has been investigated. An asymptotic theory of screening, which leads to a two-exponential dependence of the macroparticle potential on distance with different screening constants, is used to determine the electrostatic energy of the system of charges associated with the two macroparticles. The dependence of the electrostatic energy on interparticle distance has been found to have a minimum, as in an equilibrium plasma. The interaction force between the macroparticles has been determined; it turned out to be asymmetric—for different charges, the forces acting on the first and second macroparticles are not equal. This is the result of an asymmetric charge separation near macroparticles with differing charges and indicates that the interaction force in a nonequilibrium plasma is nonpotential. The forces are equal for identical macroparticles or in an equilibrium plasma and the potential energy of the interaction between the macroparticles has been determined for these cases. Attraction between likely charged particles with different (in magnitude) charges has been found to be possible when they come very close together. Relations to determine the modified coupling parameter for an interaction potential that consists of two exponential terms with different screening constants have been derived.  相似文献   

12.
A regular truncation scheme in which the divergencies characteristic of the Debye truncation are removed by taking into account the shall-range correlations. As a result, the two radii of screening the Debye radius D and √2 D appear in plasma which is not symmetrical as to its particle charges. The criterion of the applicability of this approach relates the plasma parameter to the potential depth of unlike-charged particles interaction.  相似文献   

13.
Recently, it was shown that the neutral shadowing force can have a strong impact on the structural properties of the charged dust particles in cryogenic dusty plasmas. Therefore, in this work, we have investigated the impact of the neutral shadowing force on the dynamical properties by means of molecular dynamics simulations. By computing the velocity auto‐correlation function of particles and their spectrum, we found that the neutral shadowing force has a strong impact on the dust particle dynamics if the mean free path of neutrals exceeds the mean inter‐dust particle distance.  相似文献   

14.
为了研究尘埃等离子体中带电尘埃的粒子半径、粒子浓度和带电荷数对量子通信性能的影响,首先根据Mie散射理论得到单个带电尘埃粒子的光散射截面;然后通过粒子浓度求出总的消光截面,得出链路衰减的数学模型,提出了带电粒子特性与量子纠缠度的关系;针对退极化信道,当单个尘埃粒子所吸附带电粒子的个数为50时,给出了尘埃粒子半径、粒子浓度与信道容量和量子误码率的定量关系.仿真结果表明,当量子信号的传输距离为10km时,尘埃粒子浓度从1×10~(10) m~(-3)增加到10×10~(10) m~(-3),信道容量从0.6726降低到0.1075;尘埃粒子半径从0.1μm增加到10μm时,量子误码率由1.334×10~(-3)增加到5.309×10~(-3).由此可见,尘埃等离子体中带电尘埃粒子的半径和浓度对量子卫星通信性能有显著的影响.因此,为确保量子通信的可靠性,应根据所探测到的等离子体环境的状况,调整卫星通信系统的各项指标参数.  相似文献   

15.
We analyze the structure of the space electric charge that appears in the vicinity of a charged dust particle in a moving conductive medium. We show that when the conduction currents play a major role, the screening space charge is concentrated in the form of a thin wake behind the dust particle, while the total Coulomb field forms a dipole structure and serves as an attractive center for other particles with charges of the same sign. We consider the pairing conditions for such particles. Including the polarization contribution from the dust component to the permittivity radically changes the field structure when the dust particle concentration approaches the dissipative instability threshold. In this case, the zone of attraction of like-charged dust particles expands sharply. Estimates suggest that the effects under consideration can govern the formation of regular structures in a moving dusty plasma at fairly high pressures, P > 0.1–1 mbar.  相似文献   

16.
An effective potential is proposed for the interaction between dust particles in a gas-discharge plasma which takes account of the following physical factors: the spatial dependence of the particle charges on the floating potential of the plasma, anisotropy of the interaction, resulting from focusing of the negatively charged particles of the drift ion current, and aspects of screening of the dust particles by plasma electrons and ions which interact strongly with them and recombine faster in their vicinity and on their surface. Monte Carlo calculations explain the formation of threadlike structures of dispersed particles, and also “transverse crystallization” of these “threads” in a stratified gas-discharge plasma. Zh. éksp. Teor. Fiz. 115, 819–836 (March 1999)  相似文献   

17.
A noise power spectrum estimation method is presented for optical disk readout signal influenced by dust on the substrate. The noise due to dust has been modeled using geometrical optics and assuming the Poisson distribution for the dust particles. The noise power spectrum consists of two components: one comes from the effect of individual dust particles passing across the light beam, and the other comes from the effect of overlapping area of a particle and the inverted image of another particle. The feasibility of a thin-substrate optical disk was studied using this model. Dust will not have a serious effect on the readout signal when a 0.6 mm-thick substrate is used in place of the conventional 1.2 mm-thick substrate.  相似文献   

18.
A fluid velocity meter is described; this operates by measuring the time taken for individual dust particles carried in the flow to travel between two points in space. A laser is used to produce two light beams parallel to one another and approximately normal to the flow direction. These beams are focused to two point or line foci in the region of interest: these foci are separated by a distance of the order of 1 mm in the flow direction. A particle crossing both foci in succession gives two scattered light pulses, and the time interval between these is measured by an oscilloscope or digital chronometer. The particles are natural dust particles occurring in the laboratory air or tap water. As in Doppler and fringe anemometers, the advantage of the laser is its spatial coherence: it enables extreme intensity to be obtained in small, well-defined regions. The instrument might be described as a fringe anemometer in which all the light is concentrated into the two end fringes, the others being eliminated.  相似文献   

19.
The development of instability, heating, and melting of a two-layer crystal of dust particles in the sheath of a radio-frequency discharge has been studied by the method of Langevin molecular dynamics. The interaction forces between particles are determined in terms of a model developed earlier, in which the ion clouds under the upper particles are replaced by effective point charges. Both a pure Coulomb interaction and a screened interaction are considered. Various regimes of particle motion in the crystal are discussed. The experimental and calculated results for the mean energy of particles and the number of defects in the crystals are compared. Zh. éksp. Teor. Fiz. 114, 1672–1690 (November 1998)  相似文献   

20.
We study the influence of the nonlocality of the electron energy distribution function on the dust particle charge screening in a two-component plasma of various inert gases and nitrogen at atmospheric pressure. For our analytical and numerical calculations, we have chosen the point sink model in the diffusion-drift approximation, which, in addition to the bulk production and loss of electrons and ions, also includes the heterogeneous processes of their absorption by a dust particle. We have established that the dust particle potential distribution in the problem under consideration is a superposition of three Debye exponentials with three different screening constants. The first constant practically coincides with the inverse Debye length. The second constant is determined by the inverse length travelled by the electrons and ions in the ambipolar diffusion process in the characteristic recombination time. The third constant coincides with the inverse characteristic distance of electron energy transfer through heat conduction in the characteristic time of electron energy establishment in the processes of heating by a beam of fast electrons and energy losses in elastic and inelastic collisions. We compare our numerical calculations of the screening constants with the analytical estimates obtained in the ambipolar diffusion approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号