首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis A virus (HAV) 3C enzyme is a cysteine proteinase essential for viral replication and infectivity and represents a target for the development of antiviral drugs. A number of serine and threonine beta-lactones were synthesized and tested against HAV 3C proteinase. The D-N-Cbz-serine beta-lactone 5a displays competitive reversible inhibition with a K(i) value of 1.50 x 10(-6) M. Its enantiomer, L-N-Cbz-serine beta-lactone 5b is an irreversible inactivator with k(inact) = 0.70 min(-1), K(Iota) = 1.84 x 10(-4) M and k(inact)/K(Iota) = 3800 M(-1) min(-1). Mass spectrometry and HMQC NMR studies using (13)C-labeled 5b show that inactivation of the enzyme occurs by nucleophilic attack of the cysteine thiol (Cys-172) at the beta-position of the oxetanone ring. Although the N-Cbz-serine beta-lactones 5a and 5b display potent inhibition, other related analogues with an N-Cbz side chain, such as the five-membered ring homoserine gamma-lactones 14a and 14b, the four-membered ring beta-lactam 33, 2-methylene oxetane 34, cyclobutanone 36, and 3-azetidinone 39, fail to give significant inhibition of HAV 3C proteinase, thus demonstrating the importance of the beta-lactone ring for binding.  相似文献   

2.
This review outlines known examples of the three-dimensional structures of protein proteinase inhibitors from plants. Three families of enzymes, serine proteinases, carboxypeptidases and cysteine proteinases, are targeted by at least a dozen inhibitor families, with the majority of them adopting the standard mechanism of inhibition towards the serine proteinases. All of the inhibitors discussed maintain compact and stable inhibitory domains that bind to the active site of their target proteinases and prevent access to the substrate molecules. One interesting highlight is the knottin group. Three separate inhibitor families utilize the overall knottin fold in a different way. This fold can accommodate extensive sequence variation and for each of the squash, Mirabilis and Potato carboxypeptidase families, the proteinase-binding residues are found at a different location. Plants have also evolved additional strategies to regulate proteinase activity, such as linking inhibitory domains and targeting multiple enzymes at once. The structural aspects of these strategies are discussed in the review.  相似文献   

3.
4.
Summary 1. It has been shown that polypeptide antibiotics — bacitracin and gramicidin S — inhibit carboxylic proteinases — porcine and equine pepsins. Bacitracin inhibits pepsin with KI=2.3 mM, and gramicidin S with KI2 mM.2. The results obtained permit a theoretical foundation for the use of bacitracin and gramicidin S and also of other polypeptide antibiotics as ligands for the biospecific chromatography of proteinases.M. V. Lomonsov State University. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 385–389, May–June, 1978.  相似文献   

5.
The causative agent of severe acute respiratory syndrome (SARS) has been identified as a novel coronavirus, SARS-CoV. The main proteinase of SARS-CoV, 3CLpro, is an attractive target for therapeutics against SARS owing to its fundamental role in viral replication. We sought to identify novel inhibitors of 3CLpro to advance the development of appropriate therapies in the treatment of SARS. 3CLpro was cloned, expressed, and purified from the Tor2 isolate. A quenched fluorescence resonance energy transfer assay was developed for 3CLpro to screen the proteinase against 50,000 drug-like small molecules on a fully automated system. The primary screen identified 572 hits; through a series of virtual and experimental filters, this number was reduced to five novel small molecules that show potent inhibitory activity (IC50 = 0.5-7 microM) toward SARS-CoV 3CLpro.  相似文献   

6.
Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.  相似文献   

7.
8.
Hsp90 is a cytosolic molecular chaperone whose paralog in mitochondria, TRAP1, protects cells from oxidative stress. The recent study in Cell by Kang et al. now identifies the molecular components of the proapoptotic network regulated by TRAP1, that includes Hsp90. Targeting Hsp90/TRAP1 inhibitors to mitochondria induces rapid tumor cell-specific apoptosis.  相似文献   

9.
Seed proteins that inhibit proteinases are classified in families based on amino acid sequence similarity, nature of reactive site and mechanism of action, and are used as tools for investigating proteinases in physiological and pathological events. More recently, the plant Kunitz family of inhibitors with two disulphide bridges was enlarged with members containing variable number of cysteine residues, ranging from no cysteine at all to more than four residues. The characteristic of these proteins, as well the interactions with their target proteinases, are briefly discussed.  相似文献   

10.
Propeptides of papain-like cysteine proteinases such as papain, cathepsins B, L and S are potent inhibitors of their cognate cysteine proteinases with Ki values in the nanomolar range, and they exhibit highest inhibition selectivity for enzymes from which they originate. Recent studies have identified novel inhibitor proteins that are homologous to the proregions of papain-like cysteine proteinases. Mouse activated T-lymphocytes express cytotoxic T-lymphocyte antigen (CTLA-2), which is homologous to the proregion of mouse cathepsin L. CTLA-2 exhibits inhibitory activities to several cysteine proteinases. We have also identified a similar propeptide-like cysteine proteinase inhibitor, Bombyx cysteine proteinase inhibitor (BCPI), in the silkmoth Bombyx mori. BCPI is a slow and tight binding inhibitor of cathepsin L-like cysteine proteinases with Ki values in picomolar range, and the inhibition is highly selective towards these proteinases just like the propeptides. Recent genome analyses have shown the expression of similar propeptide-like proteins in Drosophila and rat, suggesting the presence of a novel class of cysteine proteinase inhibitors in a variety of organisms. Studies of the gene structures and phylogenetic analysis have shown that genes of the propeptide-like cysteine proteinase inhibitors have emerged from ancestor genes of their parental enzymes.  相似文献   

11.
The Bowman-Birk inhibitors (BBIs) are a family of proteins that share a canonical loop structure whose presence in a conserved conformation is linked to their inhibitory activity. We study the conformational properties of the canonical loop using a graph theoretical approach as implemented in the floppy inclusions and rigid substructure topography (FIRST). We find that the canonical loop is an independent rigid cluster in the natural inhibitors. We have further used this technique to identify residues that play an important role in the structural rigidity of the protein by quantifying their contribution to the overall rigidity of the inhibitor. We find that the conserved elements among the natural and synthetic peptides are the ones that contribute the most to rigidity, even if they are located far from the active site, as rigidity effects are nonlinear and hence nonlocal. The results help to elucidate why certain mutations in the loop of the BBI produce peptides that fail to have the designed inhibitory activity.  相似文献   

12.
[reaction: see text] N-Benzyloxycarbonyl-L-serine beta-lactone (1) is shown to irreversibly inactivate the 3C cysteine proteinase of hepatitis A virus (HAV) with k(inact) = 0.70 min(-1), K(I) = 1.84 x 10(-4) M and k(inact)/K(I) = 3800 M(-1) min(-1) at an enzyme concentration of 0.1 microM. Mass spectrometric and HMQC NMR studies using 13C-labeled 1 show that the active site cysteine (Cys-172) thiol of the HAV 3C proteinase attacks the beta-position (i.e. C-4) of the oxetanone ring, thereby leading to ring opening and alkylation of the sulfur. In contrast, the enantiomer of this beta-lactone, 2, is a reversible competitive inhibitor (Ki = 1.50 x 10(-6) M) at similar enzyme concentrations. The beta-lactone motif represents a new class of inhibitors of cysteine proteinases.  相似文献   

13.
14.
Inhibition of dimerization to the active form of the HIV-1 aspartic proteinase (HIV-1 PR) may be a way to decrease the probability of escape mutations for this viral protein. The Multiple Copy Simultaneous Search (MCSS) methodology was used to generate functionality maps for the dimerization interface of HIV-1 PR. The positions of the MCSS minima of 19 organic fragments, once postprocessed to take into account solvation effects, are in good agreement with experimental data on peptides that bind to the interface. The MCSS minima combined with an approach for computational combinatorial ligand design yielded a set of modified HIV-1 PR C-terminal peptides that are similar to known nanomolar inhibitors of HIV-1 PR dimerization. A number of N-substituted 2,5-diketopiperazines are predicted to be potential dimerization inhibitors of HIV-1 PR.  相似文献   

15.
《Tetrahedron letters》1987,28(45):5569-5572
Two simple approaches to an amino-alcohol isostere of proteolytically-cleavable dipeptide sequences are described, this isostere is incorporated into stereochemically-defined tetrapeptide analogues.  相似文献   

16.
17.
A simple and rapid method for the determination of enzyme activities with chromogenic substrates is described. Trypsin and papain were used as model proteinases and N-benzoyl-dl-arginine p-nitroanilide (BAPNA) was applied as substrate. The enzyme assay was performed on a multi-scale using 96-well microtitration plates and product release was detected with the aid of an automatic plate reader, widely used in ELISA tests. The procedure was used for electrophoretic studies of trypsin and a crude papain preparation. It was also applied for the investigation of N-peptidyl-O-acylhydroxylamine proteinase inhibitors. In comparison with commonly used procedures with chromogenic substrates, the proposed approach consumes markedly reduced amounts of all reagents. It allows an almost unlimited number of samples to be assayed in a short time and should be applicable to the detection and determination of any enzyme activitiy where chromogenic substrates are applicable.  相似文献   

18.
The protein and oil contents and the activity of proteinase inhibitors in six varieties of soybean have been studied. It has been found that the specific amidase activity of trypsin inhibitors ranges from 170 to 320 nominal units. Electrophoretic results indicates the presence in the water-soluble fraction of seven or eight components possessing inhibitor activity in relation to trypsin and chymotrypsin.Institute of Plant Physiology and Biophysics, Academy of Sciences of the Tadzhik SSR, Dushanbe. Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 761–765, November–December, 1984.  相似文献   

19.
The protein and oil contents and the activity of proteinase inhibitors in six varieties of soybean have been studied. It has been found that the specific amidase activity of trypsin inhibitors ranges from 170 to 320 nominal units. Electrophoretic results indicates the presence in the water-soluble fraction of seven or eight components possessing inhibitor activity in relation to trypsin and chymotrypsin.  相似文献   

20.
Penetration of Cs+ , Cd 2+ and Co2+ions across an animal model of human skin (five-day-old rat skin) was studiedin vitro in vertical diffusion cells. Glucans (fibrilary beta-glucan, carboxymethyl-chitosan-glucan)were used as permeation inhibitors with the aim to reduce the potential toxicologicaleffect of these metals in humans. Of the glucans studied, carboxymethyl-chitosan-glucanwas the more effective inhibitor. The dose-dependency of this effect was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号