首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ongoing challenges in topological polymer chemistry are reviewed. In particular, we focus on recent developments in an “electrostatic self-assembly and covalent fixation (ESA–CF)” process in conjunction with effective linking/cleaving chemistry including a metathesis process and an alkyne–azide click reaction. A variety of novel cyclic polymers having specific functional groups and unprecedented multicyclic macromolecular topologies have been realized by combining intriguing synthetic protocols.  相似文献   

2.
Recent developments in topological polymer chemistry are outlined. First, nonlinear polymer topologies are systematically classified on the basis of topological considerations of constitutional isomerism in a series of alkanes (CnH2n+2), monocycloalkanes (CnH2n), and polycycloalkanes (CnH2n?2, CnH2n?4, etc.). Various pairs of topological isomers are identified in randomly coiled, flexible polymer molecules with cyclic and branched structures. An electro‐ static self‐assembly and covalent fixation strategy has subsequently been developed for the efficient synthesis of a variety of topologically unique polymers, including monocyclic and polycyclic polymers, topological isomers, and topological block copolymers. In this process, new telechelics with moderately strained cyclic onium salt groups carrying multifunctional carboxylate counteranions have been designed as key polymeric precursors. Further extensions of topological polymer chem‐ istry have been achieved by the use of cyclic telechelics (kyklo‐telechelics) and cyclic macromonomers, obtainable also by means of the electrostatic self‐assembly and covalent fixation process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2905–2917, 2003  相似文献   

3.
A novel methodology (electrostatic self‐assembly and covalent fixation) has been proposed for designing various nonlinear polymer topologies, including monocyclic and polycyclic polymers, cyclic macromonomers and cyclic telechelics (kyklo‐telechelics), a‐ring‐with‐a‐branch topology polymers and polymeric topological isomers, as well as branched model polymers, such as star polymers and polymacromonomers. Thus, new telechelic polymer precursors having a moderately strained cyclic onium salt group as single or multiple end groups and carrying multifunctional carboxylates as the counterions were prepared through an ion‐exchange reaction. A variety of electrostatic self‐assemblies of these polymer precursors, formed particularly in dilute organic solution, was then subjected to heat in order to convert the ionic interactions into covalent linkages by ring‐opening reaction, and to produce topologically unique, nonlinear polymer architectures in high efficiency.  相似文献   

4.
A tandem alkyne-azide addition, i.e., click, and an olefin metathesis condensation, i.e., clip, reactions in conjunction with an electrostatic self-assembly and covalent fixation (ESA-CF) process, have been demonstrated as effective means to produce constructions of programmed folding of polymers having doubly fused tricyclic and triply fused tetracyclic topologies. Thus, a series of cyclic poly(tetrahydrofuran), poly(THF), precursors having an allyloxy group and an alkyne group (Ia), an allyloxy group and an azide group (Ib), and two alkyne groups (Ic) at the opposite positions was prepared by means of the ESA-CF method. The subsequent click reactions of Ia with a linear telechelic poly(THF) precursor having azide end groups (Id) and of Ib with Ic afforded a bridged dicyclic polymer (IIa) and a tandem spiro tricyclic precursor (IIb), respectively, both having two allyloxy groups at the opposite positions of the ring units. Finally, the intramolecular metathesis condensation reaction of IIa and of IIb in the presence of a Grubbs catalyst was performed to construct effectively a doubly fused tricyclic and a triply fused tetracyclic polymer topologies (III and IV), respectively.  相似文献   

5.
Nonlinear polymer topologies composed of cyclic and branched polymer segments are systematically classified by reference to constitutional isomerism in a series of alkanes (CnH2n+2), monocycloalkanes (CnH2n), and polycycloalkanes (CnH2n-2, CnH2n-4, etc). Thus, the total number of chain ends (termini) and of branch points (junctions) are maintained as invariant parameters, as well as the number of branches at each junction and the connectivity of junction. On the other hand, the distance between two adjacent junctions and that between the junction and terminus are taken as variant parameters. On the basis of the classification of polymer topologies, a novel synthetic strategy by an "electrostatic self-assembly and covalent fixation" technique has been proposed to construct a variety of topologically unique polymer architectures.  相似文献   

6.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

7.
Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, “click” reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects: (1) Constructions of monocyclic polymer using CuAAC “click” chemistry; (2) Formation of complex cyclic polymer topologies through CuAAC reactions; (3) Using CuAAC “click” reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.  相似文献   

8.
A novel methodology (electrostatic self‐assembly and covalent fixation) has been proposed for designing unusual polymer topologies such as star polymers, polymacromonomers, dumbbell‐shaped polymers as well as model network polymers. Thus new telechelic polymers having moderately strained cyclic onium salt group as single or both end groups were prepared and subjected to an ion‐exchange reaction to introduce multifunctional carboxylate anions as a counter‐anion. The electrostatically self‐assembled products were then subjected, either directly or after subsequent manipulation, to heat treatment to convert the ionic interaction into the covalent linkage by the ring‐opening reaction to produce a variety of topologically unique polymer architectures in high yields.  相似文献   

9.
A critical review is given of the chemistry of macrocycles, catenanes, oligomers and polymers in gold chemistry. Because gold centres are typically labile towards ligand substitution, there may be an easy equilibrium between the cyclic and linear oligomeric or polymeric forms and the preferred products of self-assembly are usually determined by thermodynamic control. The ways in which the self-assembly of complex structures from simple building blocks by dynamic coordination chemistry can be manipulated by ligand design or by the use of secondary bonding forces is emphasized (39 references).  相似文献   

10.
Due to the topological effect, cyclic polymers demonstrate different and unique physical and biological properties in comparison with linear counterparts having the same molecular-weight range. With advanced synthetic and analytic technologies, cyclic polymers with different topologies, e.g. multicyclic polymers, have been reported and well characterized. For example, various cyclic DNA and related structures, such as cyclic duplexes, have been prepared conveniently by click chemistry. These types of DNA have increased resistance to enzymatic degradation and have high thermodynamic stability, and thus, have potential therapeutic applications. In addition, cyclic polymers have also been used to prepare organic–inorganic hybrids for applications in catalysis, e.g. catalyst supports. Due to developments in synthetic technology, highly pure cyclic polymers could now be produced in large scale. Therefore, we anticipate discovering more applications in the near future. Despite their promise, cyclic polymers are still less explored than linear polymers like polyolefins and polycarbonates, which are widely used in daily life. Some critical issues, including controlling the molecular weight and finding suitable applications, remain big challenges in the cyclic-polymer field. This review briefly summarizes the commonly used synthetic methodologies and focuses more on the attractive functional materials and their biological properties and potential applications.  相似文献   

11.
A doubly fused tricyclic polymer architecture, corresponding to a delta-graph, has been constructed effectively through metathesis polymer cyclization (MPC) of an 8-shaped dicyclic polymer precursor having two allyl groups placed at opposite positions of the two rings of the 8-shaped structure. The 8-shaped polymer precursor has been obtained through the covalent conversion of an electrostatic self-assembly (composed of two units of the linear poly(tetrahydrofuran)s, poly(THF)s, having pyrrolidinium salt end groups and having a pendant allyl group at the middle of the chain, carrying a tetrafunctional carboxylate counteranion) by the heating treatment under appropriate dilution to cause the ring-opening reaction of pyrrolidinium salt groups by carboxylate anions.  相似文献   

12.
Summary: A pair of macromolecular constitutional isomers having topologically distinctive, dicyclic constructions, that is, θ‐shaped and manacle‐shaped polymers, has been synthesized from a polymer self‐assembly, comprised of three‐armed star poly(tetrahydrofuran) [poly(THF)] having N‐phenylpyrrolidinium salt end groups carrying dicarboxylate counteranions ( 1S / 2d ). The presence of the two constitutional polymeric isomers was confirmed by means of a reversed‐phase liquid chromatography (RPC) technique. Moreover, size exclusion chromatography (SEC) showed that a major component possesses notably larger hydrodynamic volume than the others, and is assignable as a manacle‐shaped isomer while a minor component is assigned as a θ‐shaped isomer. The statistics of the covalent‐linking process of 1S / 2d were consistent with the other experimental results.

An “electrostatic self‐assembly and covalent fixation” process of a trifunctional star‐shaped precursor gives rise to θ‐shaped and manacle‐shaped polymers.  相似文献   


13.
An Erratum has been published for this article in J Polym Sci Part A: Polym Chem (2004) 42 213 In this article, recent examples are reviewed of late-transition-metal catalysis applied to polymer topology control. By the judicious selection or design of late-transition-metal catalysts, polymers with a broad range of topologies, including linear, short-chain-branched, hyperbranched, dendritic, and cyclic topologies, have been successfully synthesized. A distinctive advantage of the catalyst approach is that polymers with complex topologies can be prepared in one pot from simple commercial monomers. A fundamental difference of the catalyst approach with respect to other approaches is that the polymer topology is controlled by the catalysts instead of the monomer structure. In our own laboratory, we have successfully used two strategies to control the polymer topology with late-transition-metal catalysts. In the first strategy, hyperbranched polymers are prepared by the direct free-radical polymerization of divinyl monomers through control of the competition between propagation and chain transfer with a cobalt chain-transfer catalyst. In the second strategy, polyethylene topology is successfully controlled by the regulation of the competition between propagation and chain walking with the Brookhart PdII-α-bisimine catalyst. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3680–3692, 2003  相似文献   

14.
Two unique molecular templates for generating polymeric materials with a cyclic molecular architecture were developed by combining ring-expansion metathesis polymerization and click chemistry. These two universal cyclic polymers were used in three examples to demonstrate the wide range of potential materials enabled. They include functional cyclic polymers, cyclic polymer brushes, and cyclic gels.  相似文献   

15.
Methods for characterising cyclic polymers are illustrated by reference first to dilute solution methods for cyclic poly(dimethylsiloxane) (PDMS) and then to the entrapment of cyclic polymers in networks. Preparative routes to cyclic polymers are then reviewed, including ring-chain equilibration reactions, coupling and condensation reactions and new methods using polymer-supported reagents. Some of the properties of cyclic PDMS are discussed, including differences between ring and chain polymer properties such as their melt viscosities and glass transition temperatures. Methods for preparing the first polymeric catenanes are described, using polymer-supported reagents. Future directions for cyclic polymer chemistry are indicated, including topological polymer chemistry.  相似文献   

16.
Recently, metal-coordinated orthogonal self-assembly has been used as a feasible and efficient method in the construction of polymeric materials, which can also provide supramolecular self-assembly complexes with different topologies. Herein, a cryptand with a rigid pyridyl group on the third arm derived from BMP32C10 was synthesized. Through coordination-driven self-assembly with a bidentate organoplatinum(II) acceptor or tetradentate Pd(BF4)2•4CH3CN, a di-cryptand complex and tetra-cryptand complex were prepared, respectively. Subsequently, through the addition of a di-paraquat guest, linear and cross-linked supramolecular polymers were constructed through orthogonal self-assembly, respectively. By comparing their proton nuclear magnetic resonance (1H NMR) and diffusion-ordered spectroscopy (DOSY) spectra, it was found that the degrees of polymerization were dependent not only on the concentrations of the monomers but also on the topologies of the supramolecular polymers.  相似文献   

17.
The preparation of intelligent-responsive materials with controllable topology structure has long been a significant objective for chemists in the field of materials science. In this paper, we designed and prepared a linear-cyclic reversible topological structure polymer based on the bistable [1]rotaxane molecular shuttle. A ferrocene-functionalized [1]rotaxane and naphthalimide fluorophore group are introduced into the both ends of the polymer, which exhibit distance-induced photo-electron tran...  相似文献   

18.
A theoretical study of the TiCn (n = 1–8) clusters has been carried out at the B3LYP/6-311+G(d) level. Molecular properties for three different isomers, namely linear, cyclic, and fan species, have been determined. The fan isomers, where the titanium atom is essentially side-bonded to the entire Cn unit, are predicted to be more stable than both linear and cyclic isomers. Only for the largest studied species, TiC8, the cyclic isomer is located lower in energy. An even–odd parity effect in the incremental binding energies is observed for the three isomers, n-even species being in general more stable for linear and fan isomers, whereas for the cyclic species n-odd clusters are favoured. A topological analysis of the electronic charge density shows that all cyclic isomers correspond to true monocyclic rings, whereas for the fan species a variety of different connectivities has been observed.  相似文献   

19.
We report on a simple and effective method to prepare polymer brush by electrostatic self-assembly of dendritic macrophotoinitiator and photoinitiated polymerization.  相似文献   

20.
The preparation of uniform polymers and their use in fundamental polymer chemistry are reviewed. A typical method of preparation is a combination of living polymerization and supercritical fluid chromatography separation. Synthetic uniform polymers allow us to solve ambiguous problems in polymer chemistry due to molecular weight distribution and are of significant importance for studies on structure–property relationships. A close inspection of an isotactic uniform chloral oligomer with a symmetrical chemical structure reveals that oligomers are the first examples of stable atropisomers of aldehyde oligomers and that their chiroptical properties are due only to their helical geometries. A molecular-level understanding of the mechanism and stoichiometry of the association process of polymer molecules is possible only with uniform polymers, and stereocomplex formation between isotactic and syndiotactic poly(methyl methacrylate)s in acetone has vigorously been studied by size exclusion chromatography (SEC) and NMR. End-functionalized uniform polymers have enabled us to prepare uniform polymer architectures, such as block, graft, comb, and star polymers. A uniform stereoblock poly(methyl methacrylate) with an isotactic (methyl methacrylate)46-syndiotactic (methyl methacrylate)46 structure shows a single SEC peak in chloroform but three peaks in acetone, which are ascribable to intermolecularly and intramolecularly associated complexes and nonassociated molecules. A three-arm star polymer with one isotactic chain and two syndiotactic chains shows a peculiar SEC behavior in acetone due to a braid type of intramolecular stereocomplex formation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 416–431, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号