首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fully sulfonated poly(styrenesulfonate) brushes were grown from the surface of colloidal silica particles and used to prepare stable trichloroethylene-in-water and heptane-in-water Pickering emulsions. These particles were highly charged and colloidally stable in water but could not be dispersed in trichloroethylene or heptane. Both two-phase (emulsion plus neat water) and three-phase (emulsion separating neat oil and water phases) systems were observed, with water-continuous emulsion phases in all cases. Emulsion phases containing as much as 83% (v/v) oil were stable for over six months. Poly(styrenesulfonate)-grafted particles were very efficient emulsifiers; stable emulsion phases were prepared when using as little as 0.04 wt% particles. The emulsifying effectiveness of the poly(styrenesulfonate)-grafted silica particles can be attributed to the hydrophobicity of the vinylic polymer backbone that makes this highly charged polyelectrolyte unusually surface active at the oil/water interface.  相似文献   

2.
3.
Nearly monodispersed silica-poly(methacrylic acid) (SiO 2-PMAA) core-shell microspheres were synthesized by distillation-precipitation polymerization from 3-(trimethoxysilyl)propylmethacrylate-silica (SiO 2-MPS) particle templates. SiO 2-PMAA-SiO 2 trilayer hybrid microspheres were subsequently prepared by coating of an outer layer of SiO 2 on the SiO 2-PMAA core-shell microspheres in a sol-gel process. pH-Responsive PMAA hollow microspheres with flexible (deformable) shells were obtained after selective removal of the inorganic SiO 2 core from the SiO 2-PMAA core-shell microspheres by HF etching. The pH-responsive properties of the PMAA hollow microspheres were investigated by dynamic laser scattering (DLS). On the other hand, concentric and rigid hollow silica microspheres were prepared by selective removal of the PMAA interlayer from the SiO 2-PMAA-SiO 2 trilayer hybrid microspheres during calcination. The hybrid composite microspheres, pH-sensitive hollow microspheres, and concentric hollow silica microspheres were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis.  相似文献   

4.
Hollow microspheres with ordered mesoporous walls are synthesised under ambient conditions by a simple procedure involving dilution and neutralisation of an aqueous tetraethoxysilane/cetyltrimethylammonium bromide reaction mixture.  相似文献   

5.
Monodisperse CdTe composite microspheres with a spherical shape were prepared using organosilane chemicals in aqueous solution. CdTe nanocrystals (NCs) were loaded into the matrix of silica microspheres during the formation of composite microspheres. Detailed characterization of the CdTe composite microspheres by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectrofluorimeter was performed to elucidate the morphology and fluorescence of the composite microspheres. In contrast to CdTe NCs in aqueous solution, CdTe NCs in the composite microspheres revealed high stability and fluorescence due to the confined effects of silica matrix. In addition, multicolored CdTe QDs were encoded into the microspheres at precise ratios.  相似文献   

6.
The use of solid scavengers in parallel solution-phase organic synthesis is an effective method for work-up and purification. Functionalized macroreticular or gel-form polystyrene particles are generally used for scavenging applications, how ever these materials have some limitations. We have developed new scavenging reagents based on ultrapure silica microspheres displaying a variety of functional groups useful for sequestering impurities from reaction products. These materials are easy to handle, have excellent mass-transfer properties, and are efficient scavengers in both polar and nonpolar organic solvents. The properties of these materials were tailored specifically to fit the needs of a medicinal chemist employing parallel synthesis techniques in current commercial equipment. Results are presented from head-to-head comparisons with conventional scavengers in tests designed to demonstrate the versatility of these new materials.  相似文献   

7.
Hollow silica microspheres(HSMSs) have been successfully fabricated via a facile hydrothermal route using D-glucose as the sacrificial template and sodium silicate powder as the silica precursor.The resulting silica hollow particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and infrared spectroscopy(IR).The surface area was determined using the BET method.SEM and TEM images exhibited micro-sized silica hollow particles with a size of ~1.5μm.  相似文献   

8.
The entrapment of silica-based microspheres, commonly used as stationary phases in chromatography, with an organic porous polymer based on poly(butyl acrylate-co-1,3-butanediol diacrylate) was explored. The spheres were immobilized by photopolymerization leading to entrapped beds within 75 microm i.d. fused silica capillaries, and were mechanically stable, resisting pressure drops of over 5600 psi (38.6 MPa) for only 1 cm of material. The morphology of the polymer formation around the spheres was investigated by SEM and corroborated with back pressure measurements, which indicated that the spheres were held together by encapsulating polymer. The entrapped material was extruded from the capillary in some cases to facilitate imaging. The entrapment conditions were explored, varying the polarity of the sphere surface, the solvent, and the monomers, revealing that polymer formation is based on partitioning of the monomers between the surface and solvent. The resulting polymer morphology is discussed with respect to the effects of confinement, supported by experiments with varying microsphere diameters. The columns described here have favourable properties for use in capillary chromatography and supported catalysis among other applications, and is suitable for lab-on-a-chip devices.  相似文献   

9.
Summary Porous silica microspheres (PSM) have been treated with ammonium bifluoride to adjust porosity, pore size, remove surface impurities, and minimize surface acidity. The porosities of four silicas having mean pore diameters ranging from 150 to 750 ? have been altered from initial values to the point at which the mechanical strength is insufficient to allow packed columns with acceptable performance. It is shown that a linear relationship exists between a change in porosity and the relative amount of ammonium bifluoride used to treat the silica. This reagent removes silica homogeneously from all pores in a given microsphere in a controllable and predictable manner. This treatment increases the peak capacity and improves chromatographic performance. The surfaces of treated silicas were probed with thiamine in the ion-exchange chromatographic mode. The slopes and intercepts of plots in which retention is plotted against the reciprocal of buffer concentration were both significantly reduced indicating that surface acidity is minimized by this treatment.  相似文献   

10.
A green and inexpensive alternative to existing methods for the preparation of magnetic iron oxide/silica nanocomposite particles has been investigated. The use of water-in oil emulsions based on vegetable oils instead of usual solvents led to microsized or nanosized magnetic silica spheres exhibiting similar characteristics to those of classical procedures. Furthermore this approach is very general since a large class of porous magnetic colloids differing in size or iron oxide fraction has been obtained. This work emphasizes the importance of the level of the shearing during the emulsification step with regard to the size and monodispersity of the prepared beads. All the materials prepared were fully characterized (SEM and TEM microscopies, SQUID magnetometry, N(2) sorption volumetry, etc.). In addition, samples functionalized by thiol groups have been synthesized and successfully tested for the removal of heavy metals in water-treatment.  相似文献   

11.
This paper reports a droplet-based microfluidic device composed of patterned co-planar electrodes in an all-in-a-single-plate arrangement and coated with dielectric layers for electrowetting-on-dielectric (EWOD) actuation of discrete droplets. The co-planar arrangement is preferred over conventional two-plate electrowetting devices because it provides simpler manufacturing process, reduced viscous drag, and easier liquid-handling procedures. These advantages lead to more versatile and efficient microfluidic devices capable of generating higher droplet speed and can incorporate various other droplet manipulation functions into the system for biological, sensing, and other microfluidic applications. We have designed, fabricated, and tested the devices using an insulating layer with materials having relatively high dielectric constant (SiO(2)) and compared the results with polymer coatings (Cytop) with low dielectric constant. Results show that the device with high dielectric layer generates more reproducible droplet transfer over a longer distance with a 25% reduction in the actuation voltage with respect to the polymer coatings, leading to more energy efficient microfluidic applications. We can generate droplet speeds as high as 26 cm/s using materials with high dielectric constant such as SiO(2).  相似文献   

12.
13.
We investigate the effect of small concentrations of highly charged nanoparticles on the stability of uncharged colloidal microspheres using large-scale simulations. Employing pair potentials that accurately represent mixtures of silica microspheres and polystyrene nanoparticles as studied experimentally, we are able to demonstrate that nanoparticle-induced stabilization can arise from a relatively weak van der Waals attraction between the colloids and nanoparticles. This demonstrates that the nanoparticle haloing mechanism for colloidal stabilization is of considerable generality and potentially can be applied to large classes of systems. The range of optimal nanoparticle concentrations can be tuned by controlling the attraction between colloids and nanoparticles.  相似文献   

14.
Silica/polypyrrole (PPY) core/shell microspheres and PPY hollow microspheres were prepared by the template of silica particles whose surface character was modified with different modified agents. The morphology and structure of the particles were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Elemental analysis and X-ray photoelectron spectroscopy (XPS) were carried out to characterize the structure of PPY hollow microspheres. We investigated the effect of different modified agents on the surface character of silica particles and the effect of surface character of silica particles on the morphology of PPY hollow microspheres. The effect of reaction conditions on the size of core/shell particles and hollow particles was also studied.  相似文献   

15.
Xu  Peng  Liang  Juan  Cao  Xiaoyong  Tang  Jingen  Gao  Juan  Wang  Liying  Shao  Wei  Gao  Qinwei  Li  Wei  Teng  Zhaogang 《Research on Chemical Intermediates》2016,42(12):8321-8328
Research on Chemical Intermediates - In this paper, we demonstrate a facile electroless plating method for fabricating silver nanoparticles deposited onto hollow mesoporous silica microspheres...  相似文献   

16.
杨新林 《高分子科学》2010,28(5):807-817
 Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres, which were afforded by a three-stage reaction. Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid (MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica core, which was prepared by the Stöber hydrolysis as the first stage reaction. The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene (DVB) crosslinker in presence of silica/PMAA particles as seeds, in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure. The morphology and the structure of silica core, silica/PMAA core-shell particles, the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS).  相似文献   

17.
This work studies the interfacial behaviors of a thickly grafted hydrophilic oligomeric layer on silica microspheres (). The surface layer comprises the homopolymer or block-copolymer chains of sodium 4-styrenesulfonate (SSNa) and 4-vinylpyridine (4VP). Such a core-shell microspheric structure is constructed by the atom transfer radical polymerization method. Two types of block-copolymer chains are synthesized through reversing the chain growing sequence of PSSNa and P4VP blocks, a copolymer double layer is, therefore, generated. It is found that these two block-sequences produce rather different impacts on the chain–chain interaction patterns. Furthermore, the functional group type and the sequence of the grafted copolymer blocks influence the hydrodynamic volume of the particles in the designated dispersion media with different pH or polarity. More appealingly, the two types of double-layers exhibit very different roles in mediating ion (H+ or Na+) transport in the liquid medium where a substantially low content of the microspheres is present.  相似文献   

18.
Very fast reversed-phase separations of biomacromolecules are performed using columns made with superficially porous silica microsphere column packings ("Poroshell"). These column packings consist of ultra-pure "biofriendly' silica microspheres composed of solid cores and thin outer shells with uniform pores. The excellent kinetic properties of these new column packings allow stable, high-resolution gradient chromatography of polypeptides, proteins, nucleic acids, DNA fragments, etc. in a fraction of the time required for conventional separations. Contrasted with <2-microm non-porous particles, Poroshell packings can be used optimally with existing equipment and greater sample loading capacities, while retaining kinetic (and separation speed) advantages over conventional totally porous particles.  相似文献   

19.
Thermosensitive inorganic-organic hybrid polymers and gels can be used for controlled molecular transport in a variety of applications that require robust, mechanically stable materials. Silica and poly(N-isopropylacrylamide) (PNIPAAm) precursors were copolymerized in the presence of surfactant supramolecular assemblies to form hybrid gels with ordered nanostructure. This method was less complicated and results in enhanced reversible transport properties compared to previous approaches noted herein. In this study, the thermoresponsive polymer, PNIPAAm, was incorporated into polymerizing silica networks using the coupling agent 3-methacryloxypropyltrimethoxysilane. The hydration transition of PNIPAAm associated with its lower critical solution temperature (LCST) in aqueous solution was retained in the hydrated silica matrices and was used to control the permeability of membranes and molecular release behavior of particles. This report presents new methods for formation of hybrid silica/PNIPAAm membranes and particles, characterization of these materials, and documentation of reversible molecular transport properties of these new hybrid materials.  相似文献   

20.
This article presents a novel route to prepare hollow silica microspheres with well-defined wall thickness by using cross-linked polystyrene (PS) microspheres as templates with the assistance of supercritical carbon dioxide (SC-CO2). In this approach, the cross-linked PS templates can be firstly prepared via emulsifier-free polymerization method by using ethylene glycol dimethacrylate or divinylbenzene as cross-linkers. Then, the silica shell from the sol–gel process of tetraethyl orthosilicate (TEOS) which was penetrated into the PS template with the assistance of SC-CO2 was obtained. Finally, the hollow silica spheres were generated after calcinations at 600 °C for 4 h. The shell thickness of the hollow silica spheres could be finely tuned not only by adjusting the TEOS/PS ratio, which is the most frequently used method, but also by changing the pressure and aging time of the SC-CO2 treatment. Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscope were used to characterize these hollow silica spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号