首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A convenient two-step route was developed to prepare new anionic ATRP macroinitiators from near-monodisperse poly(2-hydroxyethyl methacrylate) precursors by partial esterification with 2-bromoisobutyryl bromide, followed by esterification of the remaining hydroxyl groups using excess 2-sulfobenzoic acid cyclic anhydride. These new macroinitiators can be electrostatically adsorbed onto ultrafine cationic Ludox CL silica sols; subsequent surface polymerization of various hydrophilic monomers in aqueous solution at room temperature afforded a range of polymer-grafted ultrafine silica sols. The resulting sterically stabilized particles were characterized by dynamic light scattering, transmission electron microscopy, aqueous electrophoresis, FTIR spectroscopy, and elemental microanalyses.  相似文献   

2.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

3.
A new approach for the surface grafting of polymer chains to colloidal substrates is described. A cationic macroinitiator has been designed for the surface polymerization of a wide range ofhydrophilic methacrylates from ultrafine inorganic oxide sols by atom transfer radical polymerization in protic media at ambient temperature. One advantage of this approach is that it allows one-pot syntheses: the macroinitiator is adsorbed onto the sol, followed by an in situ polymerization. Nonionic, cationic, and betaine monomers can be polymerized directly by this protocol, with reasonably high conversions being obtained, as judged by 1H NMR spectroscopy. Anionic monomers such as sodium 4-styrenesulfonate cannot be polymerized directly due to incompatibility problems with the cationic macroinitiator-coated sol. However, hydroxylated monomers such as glycerol monomethacrylate can be surface-polymerized and then converted to anionic polyelectrolytes by reaction with succinic anhydride under mild conditions. This derivatization was confirmed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic analysis. Thermogravimetry was used to assess the degree of polymer grafting. Higher target degrees of polymerization led to increased grafted polymer loadings, as expected. Particle morphologies and relative degrees of dispersion in aqueous solution were assessed by transmission electron microscopy and dynamic light scattering, respectively. Surface characterization of the polymer-grafted sols was achieved by X-ray photoelectron spectroscopy and aqueous electrophoresis measurements. Most of the data reported in this study concern surface polymerizations from ultrafine silica sols, but some preliminary data for ultrafine tin(IV) oxide sols are also presented. Since most surfaces are negatively charged, this cationic macroinitiator approach can, in principle, be extended to include a wide range of sols, latexes, and planar substrates without requiring a separate surface functionalization step.  相似文献   

4.
A combination of sol–gel method and in situ polymerization was used to form a hybrid silica/poly(acrylic acid) nanolayer for the corrosion protection of aluminum pigments. To this end, the pigment particles were first coated with a silica layer by sol–gel method. Tetraethylorthosilicate was used as a precursor and during a condensation reaction, an inorganic silica layer was formed. Then, 3-methacryloxypropyltrimethoxysilane was attached on the surface and in situ polymerization of acrylic acid (AA), as a hydrophile monomer, was performed. The obtained Al/Si/PAA flakes were characterized by different methods such as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The attached PAA chains on the surface were deattached by HF aqueous solution and analyzed by gel permeation chromatography. Also, the surface energy of samples was measured using Owens and Wendt equation by means of contact angle data. As results, the characterizing tests approved the successful encapsulation of Al pigments and TEM image showed a 10–15 nm silica layer and a 20–25 nm PAA layer. Although the Al/Si pigments showed a quantity of evolved hydrogen, the hybrid coated pigments had excellent anticorrosive properties in acidic and alkaline solutions. Also, the surface free energy of Al/Si/PAA showed an increase compared to that of Al.  相似文献   

5.
Novel pH-responsive polymer-grafted silica was successfully synthesized through the radical "grafting from" polymerization on azo initiator-immobilized silica. The immobilization of azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanovaleric acid chloride). The polymer-grafted silica was prepared by stirring suspension of the azo initiator-immobilized silica in anhydrous dioxane containing acrylic acid (AAc) and butyl acrylate (BA). The resulting polymer-grafted silica was demonstrated to be pH responsive to hydrophobic/hydrophilic property by reversed-phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC). In RPLC mode, the retention of aromatic compounds decreased with the increase in the pH of mobile phase. However, the opposite result was obtained in HILIC mode; the retention of soybean isoflavones was stronger with the mobile phase at higher pH. Finally, the separations of sulfonamides and soybean isoflavones were carried out in RPLC mode and the separation of some nucleotides was achieved in HILIC mode.  相似文献   

6.
Functionalization of the surfaces of silica particles is often the first step in their various applications. An improved heterogeneous Fmoc-Cl fluorescent assay using an aqueous solution was developed to detect the number of amino groups on solid-phase supports. The fluorescent Fmoc-Cl method is 50-fold more sensitive than the current UV assay using an organic solvent. This method, together with the homogeneous fluorescamine and OPA assays, is used to detect amino groups on the silica particle surface. The accuracy and effect factors of these methods were examined and the assays were optimized. The results showed that the amine groups on silica particles can produce stronger fluorescence than small amine molecules in solution, because the porous structure of the particle surface is a more hydrophobic environment. The number of active amino groups that can be conjugated with biomolecules is much less than the total number of amino groups on the silica particle. Compared with physical methods, chemical assays involving direct reaction with amino groups would furnish the closest result to the number of active amino groups on the particle surface.  相似文献   

7.
The surface of commercial titania particles was coated by a layer of silica by a two-step process which involved a power ultrasound initiated sol–gel reaction. In the first step of this solution process, aminosilane, i.e. organosilane with amino functional group, was used to modify the surface of pristine nanoparticles. Subsequent silica nanocoating was initiated and sustained under power ultrasound agitation in a mixture of surface modified particles and epoxysilane. As a result, a homogenous coverage of silica on the nanoparticles’ surface, with thickness controllable from one to several nanometers, was obtained. Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and particle surface zeta potential measurements were employed to follow steps in the process and to confirm the reaction mechanism.  相似文献   

8.
Silica/poly(methyl methacrylate) nanocomposite latex particles have been synthesized by emulsion polymerization of methyl methacrylate using a nonionic surfactant: nonylphenol poly(oxyethylene) and three different initiators, namely: 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA), potassium persulfate (KPS) and azobis(isobutyronitrile) (AIBN), being cationic, anionic and nonionic, respectively. A silica sol with an average diameter of 68 nm was used as the seed. The polymerization reaction was conducted under alkaline conditions in order to evaluate the role of the surface charge of the hydrophilic silica on the coating reaction. AIBA was found to be adsorbed on the silica surface owing to electrostatic interactions of the amidine function of the cationic initiator with the silanolate groups of the oxide surface, while the anionic and the nonionic initiators did not adsorb on silica under the same conditions. Nonetheless, whatever the nature of the initiator, polymerization took place on the silica particles as evidenced by transmission electron microscopy. The extent of interaction between the inorganic surface and the polymer particles was quantified by means of ultracentrifugation and a material balance. As much as 65% by weight of the total polymer formed was found to be present at the silica surface using AIBA, while only 40% for KPS and 25% for AIBN was found to cover the silica particles under alkaline conditions. We demonstrate that by using a cationic initiator and by controlling the pH of the suspension it is possible to significantly decrease the amount of free polymer. Coating of the silica particles took place through a kind of in situ heterocoagulation mechanism. Received: 8 December 2000 Accepted: 22 February 2001  相似文献   

9.
A new class of poly(vinyl acetate) (PVAc)/silica nanocomposite particles was successfully prepared in aqueous solution through a facile synthetic process. First, vinyl functionalized silica nanoparticles (VFSs) were synthesized using one-step method in aqueous emulsion, and then the vinyl groups located on the surface of VFSs were used to induced in situ polymerization of vinyl acetate. Scanning electron microscopy (SEM) images showed that VFSs and PVAc/silica nanocomposite particles all revealed highly monodispersed and uniform spheres. Especially, PVAc/silica nanocomposite particles obtained from transmission electron microscopy images presented an obvious core–shell structure, and the thickness of PVAc shell grafting on the surface of VFSs core was about 17 nm. In addition, the influence of the hydrolyzed and condensed time of vinyl triethoxysilane on the size and size distribution of VFSs was also investigated. The results of dynamic light scattering and SEM analysis indicated that the size and size distribution of VFSs decreased gradually with the extension of the reaction time from 6 to 48 h. Moreover, the structures and thermal properties of the samples were characterized via FT-IR and heat-flow DSC–TG.  相似文献   

10.
Tin oxide-doped hybrid particles were prepared by a wet chemical process with organic-inorganic (phenyl/silica) hybrid particles in an alcoholic solution. The phenyl/silica hybrid particles, with a diameter of ca. 790 nm were used as a new support material for tin oxide (SnO2) particles from tin(IV) chloride. The surface of the particles was modified via nitration of aromatic groups in the particles, to promote formation of the tin oxide coating on the particles. The thickness and surface morphology of the tin oxide layer coated on the nitrated-phenyl/silica hybrid particles could be controlled by varying the tin(IV) chloride concentration and reaction time. The size and morphology of the resultant particles were investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The particles obtained were also characterised by infrared (FTIR) and solid-state 13C magic angle spinning nuclear magnetic resonance (13C-CP/MAS NMR) spectroscopy. The effect of processing parameters on the crystallinity and structure of the doped hybrids were confirmed by X-ray diffraction (XRD) patterns.  相似文献   

11.
邱藤  李效玉 《高分子科学》2013,31(3):434-443
 Submicron-sized Ag-polypyrrole/poly(styrene-co-methacrylic acid) (Ag-PPy/P(St-co-MAA)) composite particles were fabricated via a redox reaction between pyrrole and AgNO3 in the presence of P(St-co-MAA) soap-free latex. The products are characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectra, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results showed that Ag-PPy nanocomposites were in situ deposited onto the surface of P(St-co-MAA) latex particles tailored by carboxylic-acid groups. The nanocomposites of Ag-PPy distributed on the surface of polymer particles transformed from discretely dots to continuously coating as the reaction temperature increased from 15℃ to 60℃. Strawberry-like composite particles were obtained at the reaction temperature of 60℃. The TGA characterization confirmed that the Ag-PPy nanocomposites loading onto the P(St-co-MAA) particles were systematically controlled over a range of 6 wt%-42 wt% by changing the reaction temperatures. The fluorescence quenching effect of the Ag-PPy/P(St-co-MAA) composite particles was explored on Rhodamine B as a model molecule with the Stern-Völmer quenching constant KSV of 5.9×104 (g/mL)-1. It is suggested that the fluorescence quenching effect is caused by the resonance energy transfer mechanism.  相似文献   

12.
Colloidal crystals formed by polymer-grafted silica particles were immobilized by a stepwise procedure consisting of gelation by radical copolymerization followed by solidification by ring-opening radical polymerization. In the first step, the poly(methyl methacrylate) (PMMA)-grafted silica colloidal crystal suspension was incorporated into the gel without altering the crystal structure by copolymerization of cross-linker, 1,2-dimethylacryloyloxyethane (DME) and methyl methacrylate (MMA). In the second step, ring-opening radical polymerization was performed after substituting the solvent with vinylidene-1,3-dioxolane. By this two-step procedure, the silica particle array of colloidal crystals was immobilized and made into durable material.  相似文献   

13.
The surface grafting onto inorganic ultrafine particles, such as silica, titanium oxide, and ferrite, by the reaction of acid anhydride groups on the surfaces with functional polymers having hydroxyl and amino groups was examined. The introduction of acid anhydride groups onto inorganic ultrafine particle was achieved by the reaction of hydroxyl groups on these surfaces with 4-trimethoxysilyltetrahydrophthalic anhydride in toluene. The amount of acid anhydride groups introduced onto the surface of ultrafine silica, titanium oxide, and ferrite was determined to be 0.96, 0.47, and 0.31 mmol/g, respectively, by elemental analysis. Functional polymers having terminal hydroxyl or amino groups, such as diol-type poly(propylene glycol) (PPG), and diamine-type polydimethylsiloxane (SDA), reacted with acid anhydride groups on these ultrafine particles to give polymer-grafted ultrafine particles: PPG and SDA were considered to be grafted onto these surfaces with ester and amide bond, respectively. The percentage of grafting increased with increasing acid anhydride group content of the surface: the percentage of grafting of SDA (Mn = 3.9 × 103) onto silica, titanium oxide, and ferrite reaching 64.7, 33.7, and 24.1%, respectively. These polymer-grafted ultrafine particles gave a stable colloidal dispersion in organic solvents.  相似文献   

14.
Correlative labeling permits colocalization of molecular species for observation of the same sample in light (LM) and electron microscopy (EM). Myosin bands in ultrathin cryosections were labeled using both fluorophore conjugated to secondary antibody (IgG) and colloidal gold (cAu) particles conjugated to primary IgG as reporters for LM and transmission electron microscopy (TEM), respectively. This technique allows rapid evaluation of labeling via LM, prior to more time-consuming observations with TEM and also yields two complementary data sets in one labeling procedure. Quenching of the fluorescent signal was inversely related to the distance between fluorophore and cAu particles. The signal from fluorophore conjugated to secondary antibody was inversely proportional to the size of cAu conjugated to primary antibody. Where fluorophore and cAu were bound to the same antibody, the fluorescence signal was nearly completely quenched regardless of fluorophore excitation or emission wavelength and regardless of particle size, 3 nm and larger. Colloidal metal particles conjugated to primary antibody provide high spatial resolution for EM applications. Fluorophore conjugated to secondary antibody provides spatial resolution well within that of conventional fluorescence microscopy. Use of fluorescent secondary antibody moved the fluorophore a sufficient distance from the cAu particles on the primary antibody to limit quenching of fluorescence.  相似文献   

15.
A new catalytic system based on palladium nanoparticles supported on poly(4-vinylpyridine) (P4VPy)-grafted silica is introduced. Aminopropylsilica was reacted with acryloyl chloride to form acrylamidopropylsilica. Onto this functionalized silica, 4-vinylpyridine monomer was polymerized by free radical polymerization. The P4VPy-grafted silica was characterized by FT-IR spectroscopy and the amount of (P4VPy) grafted was determind by thermogravimetric analysis (TGA). The complexation of (P4VPy)-grafted silica with Pd(Cl)2 was carried out to obtain the heterogeneous catalytic system. Transmission electron microscopy images (TEM) showed that palladium dispersed through polymer surface in nanoparticle size. This catalytic system exhibited excellent activity in cross-coupling reactions of aryl iodides, bromides and also chlorides, with olefinic compounds in Heck-Mizoraki, and with benzylbronic acid in Suzuki-Miyaura reactions. The use of aryl chlorides in cross-coupling reactions is usually hardly successful, but excellent results were gained in the presence of terta-n-butylammonium bromide (TBAB) as an additive. The turnover number (TON) of this catalyst reaches up to 9 × 104 in these C-C bond forming reactions. High efficiency of the catalyst along with short reaction time, high yields, easy purification, recyclability, large scale synthesis and simple procedure are among the advantages of this catalytic system  相似文献   

16.
In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.  相似文献   

17.
李丁  高保娇  位霄鹏 《应用化学》2011,28(2):154-158
将偶联剂γ-氨丙基三甲氧基硅烷(AMPS)键合在硅胶微粒表面,得到改性微粒AMPS-SiO2;使改性微粒表面的氨基与溶液中的过硫酸铵构成氧化-还原引发体系,实现了甲基丙烯酸(MAA)在硅胶微粒的表面引发接枝聚合,制得了高接枝度(0.30 g/g)的接枝微粒SiO2-g-PMAA;研究了影响表面引发接枝聚合的主要因素。 结果表明,适宜的温度为40 ℃。 已接枝到硅胶表面的聚合物层对后续的接枝聚合产生阻隔作用。 适宜的引发剂用量为单体质量的1.1%,适宜的单体质量分数为5%左右。  相似文献   

18.
We report using poly(acrylamide-co-2-(dimethylamino)ethyl methacrylate, methyl chloride quaternized) cationic microgels as a porous colloidal template for biomimetic in situ silica mineralization, allowing the well-controlled synthesis of submicrometer-sized hybrid microgel--silica particles and porous silica particles by subsequent calcination. The microgels were prepared by inverse emulsion polymerization in the presence of a bisacrylamide cross-linker. Silica deposition was achieved by simply stirring an aqueous mixture of the microgel particles and tetramethyl orthosilicate (TMOS) at 20 degrees C for 30 min. No experimental evidence was found for nontemplated silica, which indicated that silica deposition occurred exclusively within the cationic microgel template particles. The resulting microgel-silica hybrid particles were characterized by electron microscopy, dynamic light scattering, FT-IR spectroscopy, 1H NMR and solid-state 29Si magic angle spinning NMR spectroscopy, thermogravimetry, aqueous electrophoresis, and surface area measurements. Aqueous electrophoresis studies confirmed that the hybrid microgel-silica particles had positive zeta potentials over a wide pH range and isoelectric points could be tuned by varying the synthesis conditions. This suggests that these particles could form complexes with DNA for improved gene delivery. The porosity of the calcined silica particles could be controlled by varying the amount of TMOS, suggesting potential encapsulation/controlled release applications.  相似文献   

19.
Fabrication, characterization, and application of poly(phenylene ethynylene) (PPE)/silica composite particles are described. PPE is a class of conjugated polymers, which has been used for various sensory materials. However, its hydrophobic nature makes its application difficult in the aqueous phase, especially for biological substance detection. In this report, we utilized non-aqueous soluble PPE, 15 nm of colloidal silica particles, and aminosilane to fabricate a biosensory platform. The resulting composite showed high aqueous compatibility, large surface area, high quantum efficiency, and versatile chemical modification including oligonucleotide coupling. By monitoring the fluorescence quenching of PPE, we could detect a quencher-labeled target oligonucleotide specifically. Stern-Volmer (SV) analysis showed different accessibility of fluorophores (PPE) to a quencher labeled target oligonucleotide. The accessibility of fluorophores and SV constant are determined to be 0.54 and 4.2 x 10(7)M(-1), respectively, from a modified SV plot. This method will broaden the capability of conjugated polymers for the sensitive detection of biological substances.  相似文献   

20.
杨新林 《高分子科学》2010,28(5):807-817
 Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres, which were afforded by a three-stage reaction. Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid (MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica core, which was prepared by the Stöber hydrolysis as the first stage reaction. The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene (DVB) crosslinker in presence of silica/PMAA particles as seeds, in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure. The morphology and the structure of silica core, silica/PMAA core-shell particles, the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号