共查询到17条相似文献,搜索用时 62 毫秒
1.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG). 利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta 电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征. 结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1 KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点. 此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位. 与商用Pt/C相比,该材料展现出了优异的抗CH3OH“跨界效应”的特性. 相似文献
2.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG).利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征.结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点.此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位.与商用Pt/C相比,该材料展现出了优异的抗CH3OH"跨界效应"的特性. 相似文献
3.
《物理化学学报》2019,(11)
石墨烯因独特的性质和潜在的应用在过去十年受到广泛重视。得益于石墨烯研究的繁荣,氧化石墨烯作为石墨烯的最常见的衍生物,近年来也获得广泛的研究。氧化石墨烯不仅可以通过高温退火还原得到光电性质都类似石墨烯的还原氧化石墨烯,而且因其结构中存在羧基、羰基和羟基等含氧基团,为石墨烯的性能调控提供了可能。常见的做法是通过引入外来原子比如氮原子来调控石墨烯的化学催化和光电性质。然而至今在氮掺杂石墨烯的研究中,氮的类型和所处化学环境对石墨烯电学性能的影响尚不清楚,而这会影响石墨烯后续的电学和催化应用。因此,合成特定类型的氮掺杂石墨烯并研究其对后续应用的影响是必要的。我们通过氧化石墨烯和邻芳基二胺的希夫碱缩合反应成功合成了吡嗪和吡啶氮掺杂石墨烯,研究了氮的类型对石墨烯电学性能的影响。吡嗪氮掺杂的石墨烯表现出弱的n型掺杂,而强吸电子的三氟甲基基团的引入,会让吡嗪氮掺杂的石墨烯由弱n型掺杂转变为明显的p型掺杂。当在吡嗪氮中同时引入吡啶氮时,石墨烯也表现为弱的p型掺杂。因此,石墨烯的性能可以通过控制吸电子基团和掺杂不同类型的氮来实现精细调控,从而为石墨烯的应用提供更多潜在可能。 相似文献
4.
随着绿色化学的逐渐推广,碳材料作为最有前途的绿色无金属催化剂而备受关注。通过对石墨烯引入杂原子进行化学掺杂是目前最常用于改良碳材料催化活性的有效方法。从结构上看,掺杂石墨烯内特定活性物种在催化过程中起到活性位点的作用,且催化剂的催化活性随活性位点含量增加而增强。且其内部活性位点含量可通过改变制备方法中制备条件实现调控,这有助于开发具有高催化活性的掺杂石墨烯催化剂。本文综述了氮掺杂石墨烯和硼掺杂石墨烯内可作为活性位点的官能团,提出制备方法对活性位点含量的影响,并讨论了内部活性位点在氧化反应中的作用。最后对未来研究方向提出了建议和展望,为开发更高效掺杂石墨烯催化剂提供了思路。 相似文献
5.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt 制备了Pt/N-RGO纳米结构电催化剂. 采用透射电镜(TEM)、X射线光电子能谱(XPS)、X 射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能. 结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt 颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性. 相似文献
6.
N掺杂石墨烯作为一种具有较高活性和稳定性的氧还原反应(ORR)催化剂,受到人们的广泛关注。然而不同的N掺杂类型对氧还原活性的影响一直存在争议。本文通过密度泛函理论分别对石墨型和吡啶型两种N掺杂石墨烯的ORR活性进行比较研究。能带结构分析表明,石墨氮掺杂石墨烯(GNG)的导电性随掺N量的增加而降低;吡啶氮掺杂石墨烯(PNG)的导电性则随掺N量的增加先提高后降低。当N掺杂浓度达到4.2%(原子分数)时,PNG具有最优导电性。且当N掺杂浓度大于1.4%时,PNG的导电率总是高于GNG。氧还原自由能阶梯曲线发现O2的质子化是整个氧还原过程的潜在控制步骤。在同等氮掺杂浓度下,O2的质子化自由能能变在GNG上低于在PNG上,意味着若在同等电子传输能力的情况下,GNG具有比PNG更优异的催化活性。进一步分析发现:当N掺杂浓度在低于2.8%时,GNG和PNG导电性差异小,其催化ORR活性由O2质子化反应难易程度决定,GNG的催化活性优于PNG;当N掺杂浓度高于2.8%时,氮掺杂石墨烯的电子传输性能(导电性)成为决定催化剂ORR活性的主要因素,因此PNG表现出较GNG更高的活性。 相似文献
7.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt制备了Pt/N-RGO纳米结构电催化剂.采用透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能.结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性. 相似文献
8.
以热解氧化石墨烯材料为碳基底,分别使用有机氮源和无机氮源对其进行氮掺杂处理,制备了一系列氮掺杂石墨烯材料.采用透射电子显微镜、扫描电子显微镜、拉曼光谱和X射线光电子能谱等表征方法考察了氮掺杂石墨烯的生长机理.结果表明,随着制备过程中退火温度的改变,氮掺杂石墨烯中不同氮物种的含量有显著差别.这种差异是由不同氮物种化学环境的差异所导致的.所制备的含氮石墨烯材料对乙苯选择性氧化制苯乙酮反应均表现出优良的催化活性.其中,石墨氮的含量对于提高苯乙酮收率起到至关重要的作用.此外,通过氧化剂控制活化的方法可以消除过多的结构缺陷和过量氮掺杂对催化反应的不利影响,有效提升氮掺杂石墨烯的催化活性. 相似文献
9.
采用高温热退火方法制备了氮掺杂的石墨烯,并制备了氮掺杂石墨烯修饰玻碳电极(NG/GCE),研究其对鸟嘌呤的电催化氧化作用.实验考察了溶液pH值、扫速、鸟嘌呤浓度的影响.结果表明,鸟嘌呤在NG/GCE上的氧化是不可逆过程,修饰电极可以增强鸟嘌呤在电极表面的吸附,对鸟嘌呤具有很好的电催化氧化性能,降低了鸟嘌呤氧化电位.在pH=7.0的磷酸盐缓冲溶液中检测鸟嘌呤,其氧化峰电流在5.0×10-6~1.0×10-4 mol/L浓度范围内呈良好的线性关系,检出限(3σ)为1.0×10-6 mol/L. 相似文献
10.
通过两步溶剂热法制备得到三维氮掺杂石墨烯与吡啶氧基钴酞菁的复合材料(CoTPPc/NGA).该复合材料具有优良的氧气还原性能,在起峰电位和半波上接近商业化的铂碳催化剂(Pt/C),且在稳定性和抗甲醇性能上优于铂碳催化剂,有望代替铂碳催化剂成为碱性直接甲醇燃料电池的阴极催化剂. 相似文献
11.
掺杂石墨烯因对石墨烯的性质有良好的修饰作用而备受关注. 掺杂石墨烯的实验合成一直都是研究热点, 但有一个普遍的难题, 就是掺杂困难, 掺杂浓度不高. 针对这一难题, 我们提出了通过对石墨烯施加单轴应变来降低掺杂过程反应形成能, 从而实现石墨烯的有效可控掺杂的可能性. 我们的第一性原理计算结果表明, 在施加应变时, 拉伸应变有利于硼掺杂, 而压缩应变使氮掺杂更容易, 对于铝、硅、磷, 不管是拉伸还是压缩均可以使掺杂更容易. 此外, 我们还进一步揭示了单轴应变对掺杂石墨烯的电子结构及磁性质的影响规律. 相似文献
12.
《Electroanalysis》2018,30(3):551-560
The development of a low‐cost and disposable biosensor platform for the sensitive and rapid detection of microRNAs (miRNAs) is of great interest for healthcare, pharmaceuticals, and medical science. We designed an impedimetric biosensing platform using Chitosan (CHIT)/nitrogen doped reduced graphene oxide (NRGO) conductive composite to modify the surface of pencil graphite electrodes (PGE) for the sensitive detection of miRNAs. An initial optimisation protocol involved investigation of the effect of NRGO concentration and miR 660 DNA probe concentration on the response of the modified electrode. After the optimization protocol, the sequence‐selective hybridization between miR 660 DNA probe and its RNA target was evaluated by measuring changes on charge transfer resistance, Rct values. Moreover, the selectivity of impedimetric biosensor was tested in the presence of non‐complementary miRNA (NC) sequences, such as miR 34a and miR 16. The hybridization process was examined both in phosphate buffer (PBS) and in PBS diluted fetal bovine serum (FBS:PBS) solutions. The biosensor demonstrated a detection limit of 1.72 μg/mL in PBS and 1.65 μg/mL in FBS:PBS diluted solution. Given the easy, quick and disposable attributes, the proposed conductive nanocomposite biosensor platform shows great promise as a low‐cost sensor kit for healthcare monitoring, clinical diagnostics, and biomedical devices. 相似文献
13.
High Catalytic Activity of Nitrogen and Sulfur Co‐Doped Nanoporous Graphene in the Hydrogen Evolution Reaction 下载免费PDF全文
Dr. Yoshikazu Ito Weitao Cong Dr. Takeshi Fujita Prof. Zheng Tang Prof. Mingwei Chen 《Angewandte Chemie (International ed. in English)》2015,54(7):2131-2136
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis. 相似文献
14.
以硫脲、五水硝酸铋为前驱体,采用溶剂热法制备出S掺杂BiOBr光催化剂。利用XRD,SEM,XPS,UV-Vis DRS、光电化学性能等对所制备的光催化材料进行了一系列表征。同时,在可见光照射下对S掺杂BiOBr进行光催化固氮性能研究。结果表明:S掺杂BiOBr的晶体结构未发生改变,比表面积增大。同时,形成的氧空位有利于吸附、活化N2分子和促进光生载流子的迁移,进而提高其光催化固氮性能。与BiOBr相比,S掺杂BiOBr的光催化产氨为25.36 mg?L-1?h-1?g-1cat,是BiOBr的4.6倍。最后,经4次循环实验,S掺杂BiOBr催化剂仍保持稳定的固氮效率。 相似文献
15.
本文通过化学还原法制备纳米Cu_2O/氮掺杂石墨烯(NG)复合材料,用于构建一种新型的多巴胺(DA)电化学传感器。采用X射线衍射法和扫描电镜对纳米Cu_2O/氮掺杂石墨烯复合材料进行表征。在pH为7.0的磷酸盐缓冲液中,采用循环伏安法和计时电流法分别研究了DA在纳米Cu_2O/氮掺杂石墨烯复合修饰电极上的电化学行为。结果表明,该修饰电极对DA表现出显著的电催化活性,且DA在修饰电极上的反应受吸附控制。在最佳实验条件下,催化电流与DA的浓度在0.5~700μmol/L之间呈线性关系(r=0.9943),检测限达0.17μmol/L。该修饰电极的选择性高、重复性和再现性好。方法用于实际样品中DA的检测,获得结果较好。 相似文献
16.
In single-molecule junctions, anchoring groups that connect the central molecule to the electrodes have profound effects on the mechanical and electrical properties of devices. The mechanical strength of the anchoring groups affects the device stability, while their electronic coupling strength influences the junction conductance and the conduction polarity. To design and fabricate high-performance single-molecule devices with graphene electrodes, it is highly desirable to explore robust anchoring groups that bond the central molecule to the graphene electrodes. Condensation of ortho-phenylenediamine terminated molecules with ortho-quinone moieties at the edges of graphene generates graphene-conjugated pyrazine units that can be employed as anchoring groups for the construction of molecular junctions with graphene electrodes. In this study, we investigated the fabrication and electrical characterization of single-molecule field-effect transistors (FETs) with graphene as the electrodes, pyrazine as the anchoring groups, and a heavily doped silicon substrate as the back-gate electrode. Graphene nano-gaps were fabricated by a high-speed feedback-controlled electro-burning method, and their edges were fully oxidized; thus, there were many ortho-quinone moieties at the edges. After the deposition of phenazine molecules with ortho-phenylenediamine terminals at both ends, a large current increase was observed, indicating that molecular junctions were formed with covalent pyrazine anchoring groups. The yield of the single-molecule devices was as high as 26%, demonstrating the feasibility of pyrazine as an effective anchoring group for graphene electrodes. Our electrical measurements show that the ten fabricated devices exhibited a distinct gating effect when a back-gate voltage was applied. However, the gate dependence of the conductance varied considerably from device to device, and three types of different gate modulation behaviors, including p-type, ambipolar, and n-type conduction, were observed. Our observations can be understood using a modified single-level model that takes into account the linear dispersion of graphene near the Dirac point; the unique band structure of graphene and the coupling strength of pyrazine with the graphene electrode both crucially affect the conduction polarity of single-molecule FETs. When the coupling strength of pyrazine with the graphene electrode is weak, the highest occupied molecular orbital (HOMO) of the central molecule dominates charge transport. Depending on the gating efficiencies of the HOMO level and the graphene states, devices can exhibit p-type or ambipolar conduction. In contrast, when the coupling is strong, the redistribution of electrons around the central molecule and the graphene electrodes leads to a realignment of the molecular levels, resulting in the lowest unoccupied molecular orbital (LUMO)-dominated n-type conduction. The high yield and versatility of the pyrazine anchoring groups are beneficial for the construction of single-molecule devices with graphene electrodes. 相似文献
17.
Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production 下载免费PDF全文
Linghan Chen Dr. Jiuhui Han Dr. Yoshikazu Ito Dr. Takeshi Fujita Dr. Gang Huang Kailong Hu Dr. Akihiko Hirata Dr. Kentaro Watanabe Prof. Mingwei Chen 《Angewandte Chemie (International ed. in English)》2018,57(40):13302-13307
Heavy chemical doping and high electrical conductivity are two key factors for metal‐free graphene electrocatalysts to realize superior catalytic performance toward hydrogen evolution. However, heavy chemical doping usually leads to the reduction of electrical conductivity because the catalytically active dopants give rise to additional electron scattering and hence increased electrical resistance. A hierarchical nanoporous graphene, which is comprised of heavily chemical doped domains and a highly conductive pure graphene substrate, is reported. The hierarchical nanoporous graphene can host a remarkably high concentration of N and S dopants up to 9.0 at % without sacrificing the excellent electrical conductivity of graphene. The combination of heavy chemical doping and high conductivity results in high catalytic activity toward electrochemical hydrogen production. This study has an important implication in developing multi‐functional electrocatalysts by 3D nanoarchitecture design. 相似文献