首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.  相似文献   

2.
传统的锂金属电池存在电解液易泄漏、 易燃等安全隐患, 因此开发不燃性全固态电解质对于解决锂金属电池安全问题至关重要, 而如何有效降低固体电解质与电极之间的界面电阻是发展高性能全固态锂金属电池的关键. 针对如何优化全固态锂金属电池表界面的问题, 本文综述了全固态锂金属电池电极和电解质表面修饰的最新研究进展, 对提高界面接触和降低界面电阻的传统方法进行了探讨, 分析并点评了新型的表面修饰技术, 为进一步提高全固态锂金属电池的综合性能提供新思路. 最后, 对全固态锂金属电池的研究前景进行了展望.  相似文献   

3.
本文介绍了正渗透的基本原理,减压渗透在能源转化中的工作原理,并与反渗透进行了比较。阐述了正渗透实际的膜性能远低于预期的现象,以及造成该现象的理论基础。详细描述了非对称膜的浓差极化模型,指出了避免外浓差极化的方法;从膜材料的结构设计角度总结出了减弱内浓差极化的途径,从而为正渗透膜材料的制备和应用提供了理论基础。  相似文献   

4.
于越  张新波 《化学学报》2020,78(12):1434-1440
在众多能源储存系统中,锂氧气电池以其高达3500 Wh·kg-1的理论能量密度有望在性能上超越商用锂离子电池.然而,在电池充放电过程中,金属锂不可控的枝晶生长和严重的腐蚀问题极大地阻碍了锂氧气电池的发展.为了解决以上问题,制备了一种具有高比表面积、丰富孔道结构的金属有机框架材料(MOF-801),并将其设计成金属锂负极的保护层应用在锂氧气电池中.在本工作中,成功合成了具有高达762.9 m2·g-1比表面积,边长约为800 nm的立方体状纯净MOF-801材料.并且这种材料表现出对于有机电解液体系(四乙二醇二甲醚1 mol·L-1三氟甲基磺酸锂)和强还原性的金属锂都具有很好的稳定性.得益于该材料丰富的孔道结构以及高比表面积,锂离子得以更均匀地分布在电极表面促进金属锂均匀沉积,有效避免了由于枝晶刺破隔膜而导致的短路甚至火灾事故.此外,MOF-801保护层本身的阻隔作用和材料捕捉水的特性可以帮助减少污染物质(水、氧气、强氧化性物质等)的穿梭效应带来的副反应,缓解锂氧气电池中金属锂负极的腐蚀情况.因此,将经过保护的金属锂组装成的对称电池进行测试,循环寿命长达800 h,同时充/放电过电势仅为0.023 V(未经保护的电池寿命仅为254 h,最终充/放电过电势高达5 V),且循环阻抗大大降低,证明了这种策略有效地稳定了金属锂/电解液界面.将经过MOF材料保护的电极实际应用在锂氧气电池中,在限容量1000 mAh·g-1,限电流500 mA·g-1条件下,可以实现长达170圈的稳定长寿命的循环(是未经保护的电池寿命的2.88倍).使用MOF-801保护层的锂氧气电池还表现出了高达8935 mAh·g-1的高比容量.因此,本工作所报道的保护层策略为未来的碱金属空气电池负极保护领域提供了新颖的视角.  相似文献   

5.
锂-硫电池具有高的理论电芯比能量和低成本,是极具应用前景的下一代电化学储能技术,已被广泛研究。实用化锂-硫电池技术目前面临的挑战主要包括正极侧电活性硫物种在充放电过程中的不可逆损失,负极侧枝晶形核生长,以及因活性硫迁移至负极而导致的界面副反应,上述问题会导致电池工况条件下性能迅速衰退,引发电池失效和安全问题。本工作中,我们提出通过设计非对称的电极-电解质界面稳定锂-硫电池正负极电化学,协同促进电极/电解质体相和界面电荷输运,从而延长电池循环寿命,显著提升电化学性能。本文所讨论的策略有望指导电池界面理性设计,助力实现高性能的锂-硫电池。  相似文献   

6.
锂金属是具有高能量密度的负极材料,是下一代高能量密度电池研究的重点。在锂金属负极的改性研究中,锂对称电池是最常用的测试对象,但判断其短路的依据尚未统一,因此存在部分对短路数据的解析错误。本文利用原位电池对锂沉积过程中由于枝晶生长导致的短路现象进行了描述,对锂金属对称电池在充放电过程中的短路现象进行了分类和讨论。通过区分硬短路、软短路及电池活化过程,提出了判断锂对称电池中枝晶生长及电池短路的依据,为判定锂金属负极改性方法的有效性提供参考。  相似文献   

7.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

8.
锂金属负极具有极高的理论比容量和最低的还原电位,因此锂金属电池被认为是最具潜力的高比能储能器件之一.然而,充放电过程中不受控制的枝晶生长、不稳定的界面反应与巨大的体积变化导致锂金属负极库伦效率低与循环稳定性差,同时枝晶刺穿隔膜也会带来安全隐患,这些问题极大地制约着锂金属电池的实际应用.多孔聚合物由于比表面积大、密度低、...  相似文献   

9.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属 Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

10.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

11.
金属锂具有电位低、比容量高等突出优点,是极具吸引力的下一代高能量密度电池的负极材料,然而存在枝晶、死锂、副反应严重、库伦效率低、循环稳定性差等问题,限制了其实际应用。金属锂负极的成核是电化学沉积过程中的重要步骤,锂在集流体或导电载体上的均匀成核和稳定生长对于抑制枝晶死锂、提高充放电效率和循环性能具有关键作用。本文从成核机制与载体效应的角度概述了锂金属负极的研究进展,介绍了锂成核驱动力、异相成核模型、空间电荷模型等内容,分析了锂核尺寸及分布与过电位和电流密度的关系,并通过三维载体分散电流密度、异相晶核/电场诱导成核、晶格匹配等方面的研究实例讨论了载体修饰对锂负极的性能提升。  相似文献   

12.
将聚苯乙烯磺酸(PSS)进行锂化处理后, 涂覆在锂箔表面, 在锂金属表面构筑一层均匀的聚苯乙烯磺酸锂(PSSLi)界面保护层, 形成PSSLi@Li复合电极. 通过红外光谱(FTIR)、 电化学阻抗谱(EIS)、 电池性能分析和有限元多物理场仿真模拟等方法, 对该复合电极进行了结构和性能研究. 结果表明, PSSLi界面保护层能有效地避免电解液与锂金属的直接接触, 抑制了“死锂”和锂枝晶的生成. 聚苯乙烯磺酸锂具有整齐排布的磺酸基团, 为锂离子提供了稳定的传输通道, 能够均匀化锂离子的迁移速率, 调节锂离子在电极表面的浓度分布, 并实现均匀的锂金属沉积/剥离. 电化学实验数据表明, 将该PSSLi界面层涂覆在铜箔表面进行库仑效率测试, 循环 350次实验后仍然能够保持在99.5%以上; 利用PSSLi@Li复合电极组装形成的对称电池, 在1 mA/cm2的电流密度、 1 mA·h/cm2的面积容量下, 能够稳定循环1200 h以上; PSSLi@Li与磷酸铁锂正极材料组装的全电池, 在1C倍率下循环500次后, 仍具有115 mA·h/g的容量, 容量保持率可达81%以上; 在8C的高倍率下, 该电池的容量可达到105 mA·h/g.  相似文献   

13.
金属锂电池是下一代高能量密度电池体系的代表。然而,高比能金属锂电池的发展受到界面诸多问题的限制,如:金属锂负极枝晶生长、隔膜界面兼容性、正极界面不稳定等,影响了金属锂电池的界面传质传荷过程,并导致金属锂界面环境恶化、电池的容量衰减、安全性能下降等问题。金属有机骨架(MOF)是一种具有稳定多孔结构的有机无机杂化材料,近年来在高比能金属锂电池领域受到广泛关注。其多孔结构与开放的金属位点(OMs)提供了优异的离子电导率,稳定的空间结构提供了较高的机械强度,多样的官能团与金属节点带来丰富的功能性。本文分析了金属锂电池界面的主要挑战,结合金属锂界面的成核模型,总结了MOF及其衍生材料在解决锂金属负极界面、隔膜界面、以及正负极界面稳定性相互作用等方面的研究进展和作用机理,为解决高比能金属锂电池界面失稳问题提供了解决途径,并展望了MOF基材料的设计与发展方向。  相似文献   

14.
双向脉冲充电法对锂枝晶生成的抑制   总被引:1,自引:0,他引:1  
采用双向脉冲电流充电方法取代传统的直流电充电方法, 研究了金属锂电极在有机电解液1 mol•L−1 LiPF6/碳酸乙烯酯(EC):二甲基碳酸脂(DMC)(1:1, V/V)中的充电过程. 锂电极的表面变化通过原位显微镜观测和交流阻抗谱进行检测. 原位显微镜观测结果显示, 在直流充电时锂电极上明显地出现了枝晶, 而在双向脉冲充电时, 枝晶的产生和生长受到了抑制. 交流阻抗谱结果显示在双向脉冲充电下, 锂电极的表面积增长较直流充电时缓慢. 这种抑制枝晶生长, 稳定锂沉积的新充电方法有望用于锂阳极二次电池.  相似文献   

15.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   

16.
锂离子电池在便携式储能器件及电动汽车领域得到了广泛应用,然而频繁发生的电池起火爆炸事故,使热失控和热安全问题备受人们关注,目前已有多篇综述报道了缓解锂离子电池热失控的措施。相比于已经接近理论比能极限的锂离子电池,金属锂负极具有更高的比容量、更低的电势和高反应活性,但是不可控的锂枝晶生长,使得金属锂电池的热失控问题更为复杂和严重。针对金属锂电池的热失控问题,本文首先介绍了热失控的诱因及基本过程和阶段,其次从材料层面综述了提高电池热安全性的多种策略,包括使用阻燃性电解质、离子液体电解质、高浓电解质和局域高浓电解质等不易燃液态电解质体系,开发高热稳定性隔膜、热响应隔膜、阻燃性隔膜和具有枝晶检测预警与枝晶消除功能的新型智能隔膜,以及研究热响应聚合物电解质,最后对金属锂电池热失控在未来的进一步研究进行了展望。  相似文献   

17.
Electrolyte engineering is crucial for the commercialization of lithium metal batteries. Here, lithium metal is stabilized in the highly reactive sulfolane-based electrolyte under low concentration (0.25 M) for the first time. Inorganic-polymer hybrid solid electrolyte interphase (SEI) with high ionic conductivity, low bonding with lithium and high flexibility enables dense chunky lithium deposition and high plating/stripping efficiency. Low concentration electrolyte (LCE) also enables excellent cycling stability of LiNi0.5Co0.2Mn0.3O2 (NCM523)/Li cells at 1 C (90.7 % retention after 500 cycles) and 0.3 C (83.3 % retention after 1000 cycles). With a low N/P ratio (≈2), the capacity retention for NCM523/Li cells can achieve 94.3 % after 100 cycles at 0.3 C. Exploring the LCE is of paramount significance because it provides more possibilities of the lithium salt selections, especially reviving some lithium salts that are excluded before due to their low solubility. More importantly, LCE has the significant advantage of commercialization due to its cost-effectiveness.  相似文献   

18.
可充锂金属负极严重的界面不稳定性和安全问题极大限制了其商业化应用,对于锂的沉积/溶出行为以及锂枝晶的成核生长机理的清楚认识将有利于更高效的可充锂金属负极改性研究。然而,由于锂金属的高反应活性所带来的产物复杂性及其形貌多样性给原位谱学表征带来了诸多的困难。中子深度剖析(Neutron Depth Profiling,NDP)技术由于其高穿透特性、定量非破坏性、且对锂的高灵敏性,在实时研究锂金属电池中锂的电化学行为上显示出广阔的应用前景。本文首先简要介绍了NDP技术的测试原理及提高其空间/时间分辨率的方法,同时总结分析了近年来NDP技术在液态/固态电池体系中锂金属负极研究的应用,并展望了NDP技术今后的发展前景。  相似文献   

19.
Metal nanowire array films were prepared by electrodepositing Cu, Ag, Ni, Co and Cu-Ag on porous anodic alumina film. Optical transmittance of both the porous anodic alumina film and metal nanowire array film was measured in the wavelength range of 400---2600 nm under an obliquely incident light. The experimental results show that metal nanowire array films exhibit a prominent polarization function. It was found that optical polarization properties can be improved by choosing suitable kinds of electrodepositing metal, controlling the shape and length of nanowire, and changing the incident angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号