首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
Using polystyrene(PSt) particles as template,PSt/TiO2 composite particles with AgCl incorporation were prepared through hydrolysis of tetrabutyl titanate in the presence of AgNO3 and NaCl.AgCl doped TiO2 hollow particles were successfully prepared with the PSt/TiO2 composite microspheres pretreated at 180℃followed by calcination.The morphology of PSt/TiO2 particles and the crystal structures of the AgCl doped TiO2 hollow particles were characterized.The photocatalytic activity of the doped TiO2 hollow particles in degradation of Rhodamine B was tested under UV and visible lights and compared to that with Ag doped TiO2 particles.The results showed that TiO2 hollow particles,either doped with Ag or AgCl,demonstrated higher photocatalytic activity than the pure TiO2 particles.This enhancement in photocatalytic activity was more significant with AgCl doped TiO2 than that with Ag doped,and more distinct when the degradation was done under visible light than that under LTV light.  相似文献   

12.
采用溶胶-凝胶法, 结合离心纺丝技术及水蒸气活化工艺制备了一种碳掺氧缺型TiO2(C-TiO2-n)纤维光催化剂. 探究了C-TiO2-n纤维的结构、 组分、 性质及碳掺杂对其光催化活性的影响. 结果表明, 在无外碳源引入的情况下, 利用TiO2前驱体中的有机组分作为碳源, 可以实现对TiO2的碳掺杂, 且碳掺杂明显改善了光催化剂的光捕获能力并有效抑制了光生载流子的复合. 在以水中偶氮染料活性艳红(X-3B)作为目标污染物的光催化降解实验中, C-TiO2-n纤维展现了优良的光催化活性和循环稳定性. 在可见光照射60 min后, 其对X-3B的降解率达到96.99%, 动力学常数为0.0556 min-1, 是氧缺型TiO2纤维的19.86倍.  相似文献   

13.
A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.  相似文献   

14.
以钛酸四丁酯、无水乙醇和无水氯化铁为前驱体,通过一步火焰辅助热解法制备了Fe掺杂嵌碳TiO2,并研究了样品的光催化活性. 利用扫描电子显微镜及能谱、X射线光电子能谱、X射线粉末衍射和紫外-可见漫反射吸收光谱等对样品的形貌、组分、晶型和光吸收进行了表征,并研究了样品在紫外和可见光下的光催化活性. 结果表明,无需后续热处理可直接得到主要是锐钛矿相TiO2的样品,Fe3+以替位掺杂形式进入TiO2晶格,随掺杂量增加,样品在可见光区域的吸光度提高,吸收带边红移. Fe掺杂量(摩尔分数)小于0.2%可改善样品的光催化活性,当Fe掺杂量为0.1%时,样品在可见光和紫外-可见光照射下均显示出最高的降解亚甲基蓝速率.  相似文献   

15.
Nanostructured N-doped TiO2 photocatalyst has been prepared via a new approach from Ti-based MOF[NH2-MIL-125(Ti)] precursor. The success of N doping enhances light absorption and narrows the bandgap. Moreover, the as-prepared nanostructure is constructed with tiny nanoparticles and resembles a pie-like morphology inherited from the MOF, which accelerates electron transfer. Hence, as a photocatalyst for the degradation of methylene blue(MB) under visible light irradiation, the N-doped TiO2(N-TiO2) nanostructure shows higher photocatalytic activity with a reaction rate constant of 0.018 min-1 than that of the TiO2-P25 and TiO2 under the visible light.  相似文献   

16.
通过甲基丙烯酸与苯乙烯聚合制备了表面负电性的聚苯乙烯(PSt)纳米乳胶粒. 在乙醇与水的混合溶剂中, 用硅烷偶联剂乙烯基三甲氧基硅烷对其进行表面改性后加入钛酸四丁酯、 氯化钠和硝酸银, 以PSt乳胶粒为模板采用共沉淀法制备了PSt-AgCl-TiO2复合微球. 在180 ℃对其进行液相预处理及煅烧去除PSt模板后制备了Ag/AgCl-TiO2空心复合粒子. 对各阶段产物的形貌、 晶体结构和比表面积等进行了表征. 结果表明, 所得产物为Ag/AgCl与锐钛矿型TiO2复合的空心粒子, 其比表面远大于商品TiO2(P25). 考察了Ag/AgCl-TiO2复合粒子在紫外光与可见光下对罗丹明B(RhB)降解的催化活性. 结果表明, 在紫外光下n(Ag)/n(Ti)=0.1%的Ag/AgCl-TiO2复合粒子活性最高, 30 min时对RhB的降解率比不含Ag/AgCl的TiO2空心微球提高了13%; 虽然Ag/AgCl-TiO2在可见光下的催化活性远比紫外光下低, 但与纯TiO2空心纳米微球相比其催化活性仍明显增强. n(Ag)/n(Ti)=2.0%的Ag/AgCl-TiO2复合粒子催化活性最高, 120 min时对RhB的降解率比不含Ag/AgCl的TiO2空心微球提高了38%.  相似文献   

17.
利用脉冲电沉积与高温退火相结合的方法制备了镍酸镧(LaNiO3)纳米颗粒负载的二氧化钛(TiO2)纳米管阵列. 修饰于TiO2纳米管阵列上的LaNiO3纳米颗粒粒径小(< 10 nm)、分布均匀、负载量可控,一些LaNiO3纳米颗粒沉积于TiO2纳米管内. 紫外可见吸收光谱显示,LaNiO3/TiO2纳米管阵列的吸收带边较TiO2纳米管阵列明显红移,可见光吸收明显增强. 可见光下光催化降解罗丹明B(RhB)的结果表明,脉冲循环沉积500次制得的LaNiO3/TiO2纳米管阵列的光催化活性最佳,其对RhB光催化降解速率是TiO2纳米管阵列的3.5倍,并且表现出极好的光催化稳定性.  相似文献   

18.
采用溶胶-凝胶法,利用钛酸四丁酯、硝酸镧、硝酸铈和硼酸为原料,对TiO2光催化剂进行稀土-B(RE-B)的共掺杂改性制备和性能研究。采用X-射线衍射法(XRD)、冷场发射扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收(UV-Vis)光谱和荧光(PL)光谱对制得样品的相组成、表面形貌结构、表面元素组成、光响应范围及带隙能和电子-空穴的复合情况进行了初步分析。结果表明,所制掺杂TiO2的组成均为锐钛矿型,掺杂使晶格发生了较大畸变,且细晶粒由未掺杂的27 nm减小到RE-B-TiO2的10 nm,形貌为片层状不规则堆放状态存在。XPS结果表明掺杂元素有效进入二氧化钛, PL谱显示共掺杂可有效延长光催化剂的载流子寿命。掺杂后吸收边均红移, La-B-TiO2由TiO2的405 nm移动到466 nm,相应地禁带宽度减小了0.4 eV。光催化实验表明:2 h内降解亚甲基蓝(MB)时掺杂能够同时提高紫外和可见光下二氧化钛的光催化效率,而共掺杂的降解效果又优于单掺杂, La-B-TiO2紫外光下的降解率达到80.67%,为同等条件下纯TiO2的2.7倍,可见光下的降解率为74.78%。  相似文献   

19.
Limited visible-light absorption and high recombination rate of photogenerated charges are two main drawbacks in g-C3N4-based photocatalysts. To solve these problems, g-C3N4/nitrogen-doped graphene quantum dots (NGQDs)/TiO2 ternary heterojunctions were facilely prepared via a one-step calcining method. The morphology, structure, optical and electrochemical properties of g-C3N4/NGQDs/TiO2 were characterized and explored. The optimal g-C3N4/NGQDs/TiO2 composite exhibits enhanced photocatalytic degradation performance of ciprofloxacin (CIP) compared with the as-prepared g-C3N4, TiO2(P25) and g-C3N4/TiO2 heterojunction under visible light irradiation. The apparent rate constant of the composite is around 6.43, 4.03 and 2.30 times higher than those of g-C3N4, TiO2 and g-C3N4/TiO2, respectively. The enhanced photocatalytic efficiency should be mainly attributed to the improvement of light absorption and charge separation and transfer efficiency, originating from the narrow band gap and high charge carrier mobility. The active species trapping experiments results showed that the h+ and ·O2- were the main active species in the degradation process. A possible photocatalytic reaction mechanism of the g-C3N4/NGQDs/TiO2 composite for the enhanced degradation of CIP under visible light irradiation was also proposed.  相似文献   

20.
Core-shell TiO2-based photocatalysts with specific composition, morphology, and functionality have attracted considerable attention for their excellent degradation properties on organic pollutants via a photocatalytic oxidation process. Herein, a N-TiO2@NH2-MIL-88(Fe) core-shell structure was prepared by coating NH2-MIL-88(Fe) on nitrogen-doped TiO2(N-TiO2) nanoparticles. Introduction of heteroatom nitrogen to pure TiO2 expands the spectral response range, leading to enhanced quantum efficiency of photocatalyst. Furthermore, loading NH2-MIL-88(Fe) on N-TiO2 improved the adsorption ability of the nanocomposites due to the porous tunnels of NH2-MIL-88(Fe). The resulted core-shell N-TiO2@NH2-MIL-88(Fe) nanocomposites realized the transfer of photo excited electrons from N-TiO2 to NH2-MIL-88(Fe) rapidly, partially reduced Fe3+ to Fe2+ in NH2-MIL-88(Fe), and further enhanced the Fenton effect on efficiently degrading methylene blue dye(MB) under visible light(λ ≥ 420 nm) with the assistance of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号