首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
近几年来钙钛矿材料作为新兴光伏材料取得了巨大的发展进步,但有机无机杂化钙钛矿较差的环境稳定性限制了它的大规模应用。因此深入研究钙钛矿材料的降解机制有助于开发更稳定的钙钛矿光伏器件。本文基于透射电子显微学的微观形貌观察、晶体结构及元素成分表征,详细研究了杂化钙钛矿CH_3NH_3PbI_3薄膜在光照以及空气共同作用下的降解机理。研究发现,光诱导下CH_3NH_3PbI_3薄膜会与空气中的氧气发生交互作用,同时生成六方晶态PbI_2甚至氧化为非晶态化合物PbI_(2-2x)O_x (0.4 x 0.6),而其衰减位点主要存在于薄膜与空气接触的表面。降解过程中,由于存在着挥发性分解产物(I_2,CH_3NH_2)的大量丢失,薄膜的表面会产生许多小孔洞,继而形成一种蜂窝状的介孔衰竭通道。而这种衰竭方式主要与光照下钙钛矿中光生电子与氧气结合形成超氧根自由基(O_2~(·-))有关,该基团诱导了CH_3NH_3PbI_3向PbI_2和非晶氧化态的转变。本文揭示了空气中光照诱导钙钛矿薄膜的降解机理,这将为未来设计和优化更稳定的钙钛矿太阳能电池提供全面的实验数据与理论支持。  相似文献   

12.
钙钛矿材料化学组分是决定钙钛矿太阳能电池效率和稳定性的关键,纯无机钙钛矿CsPbI3具有相对较好的热稳定性和光稳定性,但由于Cs+具有较小的离子半径而导致无机钙钛矿相不稳定。最近研究发现富铯FAxCs1?xPbI3钙钛矿具有相对稳定的相结构,且可以很大程度上保持无机钙钛矿材料的热稳定性和光照稳定性,是一种非常具有前景的钙钛矿材料体系。目前这种富铯的FAxCs1?xPbI3材料合成是通过引入过量有机组分FAI实现的,其中FAI一方面充当钙钛矿的掺杂剂,另一方面过量的FAI充当添加剂。由于其具有较高的升华温度,后续需要较高的温度使过量的FAI升华,实际上这在实验上很难实现对FAI升华量的精确控制。本文重点研究具有低升华温度的胺类,如碘甲胺(MAI)、碘化二甲胺(DMAI)、碘化乙胺(EAI)、碘化胺(NH4I)和醋酸甲脒(FAAC),作为添加剂制备富铯FAxCs1?xPbI3钙钛矿材料体系的可行性,这一方面可以有效降低钙钛矿薄膜的热处理温度;另一方面可拓宽的制备纯相钙钛矿成分的窗口期,这对大面积制备纯相富铯FAxCs1?xPbI3钙钛矿薄膜尤为重要。结果表明MAI和DMAI可以作为合成FAxCs1?xPbI3钙钛矿材料的有效添加剂,其与PbI2间较强的作用力可以促进Cs4PbI6的形成并有效抑制δ-CsPbI3副产物的生成。合适的升华温度可以使薄膜在保持钙钛矿相结构的同时在较低温度升华去除过量的添加剂,最终实现在相对温和的条件下制备纯相富铯FAxCs1?xPbI3钙钛矿材料。  相似文献   

13.
The rapid development of industrialization has resulted in severe environmental problems. A comprehensive assessment of air quality is urgently required all around the world. Among various technologies used in gas molecule detection, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectroscopy (MS), electrochemical sensors, and metal oxide semiconductor (MOS) gas sensors, MOS gas sensors possess the advantages of small dimension, low power consumption, high sensitivity, low production cost, and excellent silicon chip compatibility. MOS sensors hold great promise for future Internet of Things (IoT) sensors, which will have a profound impact on indoor and outdoor air quality monitoring. The development of nanotechnology has significantly enhanced the development of MOS gas sensors. Among various nanostructures like nanoparticles, nanosheets and nanowires, the emergence of quasi-one-dimensional (q1D) nanowires/nanorods/nanofibers, with unique q1D geometry (facilitating fast carrier transport) and large surface-to-volume ratio, potentially act as ideal sensing channels for MOS sensors with extremely small dimension, and good stability and sensitivity. These structures have thus been the focus of extensive research. Among the various MOS nanomaterials available, tungsten oxide (WO3-x, 0 ≤ x < 1) nanowires feature the characteristic properties (multiple oxidation states, rich substoichiometric oxides with distinct properties, photo/electrochromism, (photo)catalytic properties, etc.), and unique q1D geometry (single-crystalline pathway for fast carrier transport, large surface-to-volume ratio, etc.). WO3-x nanowires have broad applications in smart windows, energy conversation & storage, and gas sensing devices, and have thus become a focus of attention. In this paper, the fundamental properties of tungsten oxide, synthesis methods and growth mechanism of tungsten oxide nanowires are reviewed. Among various (vapor-liquid-solid (VLS), vapor-solid (VS) and thermal oxidation) growth methods, the thermal oxidation method enables an in situ integration of WO3-x nanowires on predefined electrodes (so-called bridged nanowire devices) via the oxidation of lithographically patterned W film at relatively low growth temperature (~500 ℃) because of interfacial strain, defects and oxygen on the surface of the W film. The novel bridged nanowire-based sensor devices outperform traditional lateral nanowire devices in terms of larger exposure area, low power consumption via self-heating, and greater convenience in device processing. Recent progress in bridged WO3-x nanowire devices and sensitive NOx molecule detection under low power consumption have also been reviewed. Power consumption of as low as a few milliwatts was achieved, and the detection limit of NO2 was reduced to 0.3 ppb (1 ppb = 1 × 10-9, volume fraction). In situ formed bridged WO3-x nanowire devices potentially satisfy the strict requirements of IoT sensors (small dimension, low power consumption, high integration, low cost, high sensitivity, and selectivity), and hold great promises for future IoT sensors.  相似文献   

14.
Ferrocenyl-1,2-diketones FcCOCOR, 3, [Fc = (C5H5)Fe(C5H4)] can be prepared by oxidation of acylferrocenes FcCOCH2R or, more efficiently, by oxidation of the isomeric ketones FcCH2COR, 2. The ketones 2 are in turn readily synthesized from the salt (FcCH2PPh3)+I via the acylated salts [FcCH(COR)PPh3]+I. The haloacylferocenes FcCOCClx H3−x (x = 1, 2, 3, of which the x = 2 example is synthetically equivalent to a diketone) are synthesized by Friedel—Crafts acylation of ferrocene using CClxH3−xCOCl/AlCl3, but the reaction proceeds via two parallel pathways, one giving the normal acyl derivatives FcCOCClxH3−x and the other giving the reduced products FcCOCClx−1H4−x. Two diketones FcCOCOFc 3b and FcCOCOC6H4Ph 3c have been structurally characterised by single-crystal X-ray diffraction.  相似文献   

15.
MXene是一种新型的二维析氢催化材料,其表面容易被亲水基团O和OH混合覆盖。我们基于第一性原理计算的方法,研究了M_2XO_(2-2x)(OH)_(2x)(M=Ti,V;X=C,N)的析氢催化活性。计算结果显示,M_2XO_(2-2x)(OH)_(2x)的析氢催化活性与其表面OH覆盖率(X)密切相关。对Ti_2CO_(2-2x)(OH)_(2x)来说,OH覆盖率不超过1/3时,具有优异的析氢催化活性。对Ti_2NO_(2-2x)(OH)_(2x)、V_2CO_(2-2x)(OH)_(2x)和V_2NO_(2-2x)(OH)_(2x)来说,OH覆盖率分别达到4/9、1/3和5/9时,才具有最佳的析氢催化活性。接着,电荷分析显示OH覆盖率会显著影响M_2XO_(2-2x)(OH)_(2x)活性位点O基团的电荷量。最后,我们从态密度的角度揭示了析氢催化活性变化的原因,即活性位点O基团的氧化性随OH覆盖率的增大而被削弱。因此,本文提出了调节表面OH覆盖率来获取M_2XO_(2-2x)(OH)_(2x)最佳析氢催化活性状态的方法,这在工业制氢生产过程中具有重要的应用价值。  相似文献   

16.
采用高温固相反应,以NaF作助熔剂,在1000 ℃的温度下合成了锕系元素Pu的模拟固化体(Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7).研究了模拟固化体的物相、热膨胀系数(TEC)、热导率(TC)随温度及组成的变化规律.粉末X射线衍射(XRD)测试结果表明: Gd2Zr2O7基质本身呈弱有序烧绿石结构,而用Ce4+取代Gd3+的模拟固化体都呈缺陷萤石结构. (Gd1-xCex)2Zr2O7+x的Ce(3d) X射线光电子能谱(XPS)有六个峰,结合能分别位于881.7, 888.1, 897.8, 900.4, 907.1, 916.1 eV处,与CeO2的XPS图谱非常相似,说明Ce为四价.随着温度的升高,所有样品的热膨胀系数总体上呈增大趋势.在室温至750 ℃附近,大部分样品的热导率随温度的升高而降低,之后热导率又呈小幅上升.在相同温度下,固化体(Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7)的热膨胀系数及热导率随组成变化呈相同趋势:在0 ≤ x ≤ 0.1范围内随x的增大而增大,随后在x = 0.1-0.7时逐渐减小.  相似文献   

17.
殷宇豪  沈阳  王虎  陈肖  邵林  华文宇  王娟  崔义 《物理化学学报》2022,38(5):2006016-102
HfO2基铁电电容器,特别是TiN/HfxZr1-xO2/TiN金属-绝缘体-金属电容器,由于其良好的稳定性、高性能和互补金属氧化物半导体(CMOS)兼容性,在新一代非易失性存储器中有着广阔的应用前景。由于TiN/HfxZr1-xO2/TiN电容器的电性能与HfxZr1-xO2铁电薄膜与TiN电极层界面质量相关,因此控制TiN/HfxZr1-xO2/TiN异质结构的制备和表征至关重要。本文报道了一种三明治结构:HfxZr1-xO2铁电薄膜夹在两个TiN电极之间的新的制备方法,通过超高真空系统互连的原子层沉积(ALD)和磁控溅射设备实现。原位生长和表征结果表明,ZrO2掺杂浓度和快速热退火温度可以调节TiN/HfxZr1-xO2/TiN异质结的铁电性能,并能很好地被互连系统监控。在该体系中,通过在HfO2中掺杂50% (molar fraction, x) ZrO2并且在600 ℃下快速热退火(RTA),获得了21.5 μC·cm-2的高剩余极化率和1.35 V的低矫顽电压。  相似文献   

18.
Dense ceramic mixed ionic and electronic conducting membranes have been deposited by atmospheric spray-pyrolysis technique onto porous ceramic substrates. Perovskite oxide layers, i.e. manganites La1−xSrxMnO3, ferrites La1−xSrxFe1−y(Co,Ni)yO3, gallates La1−xSrxGa1−y(Co,Ni,Fe)yO3, cobaltites La1−xSrxCoO3 and related perovskites such as lanthanum nickelate La2NiO4 layers have been prepared. The structure, morphology and composition of the layers were characterised by XRD, SEM and WDS, respectively. Density and gas tightness of the layers were studied as a function of deposition process parameters, film thickness (from 0.5 to 3 μm) and preparation procedure. The presence of cracks and defects due to thermo-mechanical stresses applied during or after the preparation process were correlated with the membrane composition and the corresponding thermal expansion coefficient differences between substrates and membranes.  相似文献   

19.
制备了一种灵敏度高、 稳定性强的双金属双硅层核-壳结构纳米材料Au@SiO2@Ag@SiO2. 由于双金属之间的硅层促进了远程等离子体的激发转移, 使该纳米粒子具有良好的表面增强拉曼散射(SERS)的特性及优异的稳定性. 利用这种SERS活性材料能直接检测出人体尿液的主要成分, 且该材料呈现出对低浓度(10-6 mol/L)葡萄糖的无标记高效检出能力. 此外, 还实现了人工尿液中等浓度(10-3 mol/L)葡萄糖和尿素分子的同时检测, 以及实际尿液中10-3 mol/L葡萄糖的检测. Au@SiO2@Ag@SiO2纳米粒子具有在多种生物分子存在时快速检测葡萄糖的实际应用潜力.  相似文献   

20.
制备了V取代的磷钼酸H3+xPMo12-xVxO40x=0,1,2)及1-丁基-3-甲基咪唑溴盐离子液体([C4mim]Br),并采用离子交换的方法制备了系列杂化材料([C4mim]3+xPMo12-xVxO40,x=0,1,2);采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)对所制备样品进行了表征;以H2O2为氧化剂,考察了所得样品催化苯羟基化制苯酚的活性。结果表明,和相应的离子液体及杂多酸相比,杂化材料的催化活性得到了很大的提高,尤其是催化剂[C4mim]5PMo10V2O40,在优化后的条件下,苯的转化率可达到21%,苯酚的选择性在99%以上。而且,该催化剂具有很好的可重复使用性,连续使用五次后,苯的转化率和苯酚的选择性没有明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号