首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
中国地质大学(武汉)分析化学课程团队采用国家精品在线开放课程作为课程资源、慕课堂作为智慧教学工具、QQ群作为在线讲授和辅导答疑的平台,成功地开展了分析化学课程在线教学实践。实践表明,基于MOOC、慕课堂和QQ群三结合的在线教学形式受到了学生的欢迎和喜爱,学生普遍易于接受,参与积极性高,初显教学效果较好。  相似文献   

12.
针对新型冠状病毒感染肺炎疫情对高校正常开学和课堂教学造成的影响,本校分析化学教研室积极响应教育部高等学校化学类专业教学指导委员会的倡议,快速筹备与构建了基于校内多层次信息化学习平台的在线慕课教学活动,以保障延期开学期间分析化学课程的教学安排,帮助与指导选课学生在疫情防控期间高效高质量地完成本课程的学习。本文从分析化学慕课课程的快速构建与特点,校内课程平台的学习及管理,微信群、QQ群及公共邮箱等辅助教学,以及学生的使用效果与学习诉求等几个方面进行探析,希望为提高分析化学的教学质量,探索新型教学方法提供数据支持,从而与学生一同完成课程的教学与学习,收获理想的成绩。  相似文献   

13.
In view of the increasing quantity of MOOC curriculum construction and the utilization of MOOC resources, this paper puts forward how to efficiently make use of MOOC resources through deepening curriculum teaching reform. In this paper, the problems in MOOC teaching are summarized, and then the SPOC course is introduced. Along with introducing SPOC course, taking the course of inorganic and analytical chemistry in Huazhong Agricultural University as an example, four main functions of SPOC are expounded emphatically which include solving the problem of cultivating students' autonomous learning ability, solving the problem of obtaining knowledge from MOOC in a piecemeal way, solving the concern about the effect of online learning and solving the low participation of MOOC. It is concluded that the course of SPOC is an important way to make good use of MOOC. It is suggested that the co-construction and sharing of MOOC should be strengthened to enhance the efficiency of MOOC.  相似文献   

14.
在疫情特殊时期,立足以学生的学习为中心,依托物理化学国家精品MOOC、利用"慕课堂+QQ群+腾讯会议"网络技术,构建了"五步法"在线教学模式,即"导学助力→MOOC自学→在线评测→及时反馈→讨论进阶"。充分发挥教师的主导作用,采用多样化的在线教学交互策略,激励、引导学生参与教学全过程,有效保障了在线教学质量。  相似文献   

15.
Based on the massive open online course (MOOC) of physical chemistry from Chinese university MOOCs platform, the authors introduce some initiatives and experiences in the MOOC course construction and the application for undergraduate teaching in Dalian University of Technology. The blended teaching and learning mode made up of "online" and "offline" was put into practice in other universities, and a new "1 + M + N" mode to provincial cross-school sharing has been demonstrated. It was shown that only the enhancement of MOOC teaching be highly valued throughout whole course of teaching, the students' quality and ability could be better cultivated followed by improving teaching quality.  相似文献   

16.
在抗击新冠肺炎疫情期间,吉林大学无机化学教学团队依托"无机元素化学"MOOC,以超星学习通平台为载体,QQ学习群为辅助,开展以学生为中心的"无机化学Ⅱ"课程的在线教学。通过学习通平台的大数据支持和互动交流版块,对学生"课前–课中–课后"三个学习环节的学习情况进行实时跟踪和分析,实现教师和学生的深度互动,有效完成教与学。  相似文献   

17.
This review article summarizes the opportunities for utilizing the green analytical chemistry (GAC) techniques and principles in the field of quality control (QC) of pharmaceuticals. Green analytical chemistry is considered a branch of the green chemistry based on the principles overlapping with the goals of sustainable development. General definitions of quality and quality control, the principles of GAC, proposals for greener sample pretreatment and greener chromatographic method of analysis applied in QC laboratories are discussed herein. The main goal is to achieve more eco-friendly analysis in QC laboratories through different strategies and techniques, replace toxic reagents, and modify or replace analytical methods and/or techniques with safer ones, making it possible to dramatically reduce the amounts of reagents consumed and waste generated.  相似文献   

18.
In Lithuania research and development in chemical analysis are concentrated in scientific institutes and universities. The main fields of interest focus on biosensors, electrochemical sensors, sampling techniques and methods, study of atomization processes in spectrochemical analysis and noise evaluation in analytical measurements. Some laboratories also take part in international environmental monitoring programmes. There are about 50 researchers at the Ph.D. level engaged in analytical chemistry and several hundred technicians specialized in the field of analytical control. About one hundred chemical laboratories are active in scientific institutes, universities and factories. Specialized laboratories of chemical analysis are at the disposal of Environmental Control and Health Protection Departments and forensic investigation organizations. So far no laboratories are accredited according to the ISO 9000 norms. Special courses on analytical chemistry are offered at a few schools of higher education in the country. Only at the Department of Analytical Chemistry of the University of Vilnius specialized programmes are available to postgraduate students working towards a Ph.D. to improve their skills in current techniques of analytical chemistry. Recently the Technical Committee TC-16 for Chemical Analysis was formed within the standardization system of Lithuania. Its main activities are centered on issues such as national terminology, certified reference materials (CRMs), analytical methods and analytical quality assurance. There are numerous problems related to national terminology, the preparation of special documents in the field of analytical control and the production of regional environmental CRMs. Problems, also arise in obtaining and using CRMs for analytical instrument calibration and validation.  相似文献   

19.
章文伟  吕炜  黄伟 《大学化学》2020,35(5):209-216
2020年初,由于受新型冠状病毒疫情影响,学生无法按期返校开展正常教学活动。为了更好地落实教育部提出的"停课不停教、停课不停学"的要求,确保教学质量,南京大学配位化学教学团队采用"智慧树"教学平台上的"配位化学"慕课作为课程资源、QQ直播或腾讯会议作为在线授课和辅导答疑的工具、教学立方作为智慧教学平台,成功地开展了配位化学课程在线教学的探索和实践。该教学形式重组优化了教学资源,实施了学生学习过程性评价和教师教学评价,教学效果良好。  相似文献   

20.
重点探索分析化学在线开放课程群的建设,依托数字资源和网络平台为分析化学教学空间构建提供平台支撑,推动课堂教学模式的结构性变革。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号