首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
正癸烷热裂解实验和动力学模拟   总被引:1,自引:0,他引:1  
采用自制常压裂解装置, 研究了正癸烷在温度范围为973-1123 K, 停留时间为0.5-2 s时, 热裂解主要气相产物氢气、甲烷和乙烯的分布情况. 根据自主开发的机理生成软件ReaxGen, 构建了正癸烷热裂解的详细机理, 该机理包含1072步反应和281个物种. 进一步进行动力学模拟, 并用实验结果进行了初步验证. 结果表明, 在反应的温度区间内, 短的停留时间有利于乙烯和氢气的生成. 通过敏感度分析, 确定了常压下973 K, 停留时间为1 s时影响氢气、甲烷和乙烯产量的主要反应步骤是烷基的重排和β裂解反应.  相似文献   

2.
煤油自点火特性的实验研究   总被引:6,自引:0,他引:6  
在加热激波管中利用反射激波点火,采用壁端压力和CH*发射光作为点火指示信号,测量了气相煤油/空气混合物的点火延时,点火温度为1100-1500K,压力为2.0×105和4.0×105Pa,化学计量比(Φ)为0.2、1.0和2.0.分析了点火温度、压力和化学计量比对点火延时的影响.结果显示,化学计量比为1.0和2.0时活化能几乎是相同的,但与化学计量比为0.2时的活化能差异很大,拟合得到了不同化学计量比条件下点火延时随温度变化的关系式.点火延时与已有的动力学机理进行对比,实验结果与Honnet等人的动力学机理吻合得很好.对不同化学计量比条件下的反应进行了敏感度分析,结果表明在化学计量比为0.2时,对点火延时敏感的关键反应与化学计量比为1.0时的有很大差异.  相似文献   

3.
戊酸甲酯是生物柴油和长链脂类燃烧过程中的中间产物之一。迄今为止,文献中还没有戊酸甲酯点火延迟的实验结果,因此对其点火特性的研究是必要的。在本文工作中,于反射激波后测量了戊酸甲酯/空气和戊酸甲酯/4%氧气/氩气的点火延迟时间。实验条件为:戊酸甲酯/空气点火温度1050–1350 K,点火压力1.5 × 105和16 × 105 Pa,当量比0.5、1和2;戊酸甲酯/4%氧气/氩气点火温度1210–1410 K,点火压力3.5 × 105和7 × 105 Pa,当量比0.75和1.25。点火延迟时间由在距离激波管端面15毫米处的测量点测到的反射激波到达信号和CH自由基信号所决定。所得实验结果显示:对于戊酸甲酯/空气和戊酸甲酯/4%氧气/氩气,温度或压力的增加都一定会使它们的点火延迟时间变短,但对于戊酸甲酯/空气,当量比对其点火延迟时间的影响在高低压下却是不同的(16 × 105 Pa: τign = 5.43 × 10−6Ф−0.411exp(1.73 × 102/RT),1.5 × 105 Pa: τign = 7.58 × 10−7Ф0.193exp(2.11 × 102/RT)。当压力为3.5 × 105–7 × 105 Pa时,还获得了戊酸甲酯/4%氧气/氩气点火延迟时间随点火条件的变化关系:τign = 2.80 × 10−5(10−5P)−0.446±0.032Ф0.246±0.044exp((1.88 ± 0.03) × 102/RT)。这些关系式反映了点火延迟时间对温度、压力和当量比的依赖关系,且有助于将实验数据归一到特定条件下进行比较。在本文实验条件下,由于戊酸甲酯/空气的燃料浓度远大于戊酸甲酯/4%氧气/氩气的燃料浓度,所测戊酸甲酯/空气的点火延迟时间远短于戊酸甲酯/4%氧气/氩气的点火延迟时间。通过对戊酸甲酯和其它长链脂类的点火特性比较,发现在相对低温时(空气中1200 K以下,氩气中1280 K以下),戊酸甲酯的点火延迟时间要长于其它长链脂类的点火延迟时间。已有的两个戊酸甲酯化学动力学机理都不能很好地预测本文实验结果,对戊酸甲酯机理的进一步完善是需要的。敏感度分析结果表明,支链反应H + O2 = O + OH对戊酸甲酯的高温点火起着最强的促进作用。据我们所知,本文首次报道了戊酸甲酯的高温点火延迟实验数据,研究结果对了解戊酸甲酯的点火特性非常重要,并且为完善戊酸甲酯的化学动力学机理提供了实验依据。  相似文献   

4.
RP-3替代燃料自点火燃烧机理构建及动力学模拟   总被引:11,自引:0,他引:11  
通过对RP-3 航空煤油成分的分析, 以及对8 组替代模型的对比实验, 选取了73.0%(质量分数)正十二烷, 14.7% 1,3,5-三甲基环己烷, 12.3%正丙基苯作为RP-3 航空煤油的替代模型. 使用本课题组自主研发的机理自动生成程序ReaxGen, 构建了RP-3 替代燃料的高温燃烧详细机理, 用该机理模拟了激波管点火延时, 并与实验数据进行比较. 用物质产率分析和近似轨迹优化算法(ATOA)简化方法简化了详细机理. 最后对燃烧机理在不同化学计量比及压力条件下的点火延时做了敏感度分析, 考察了燃烧机理在不同化学计量比下关键反应的异同. 结果表明, 该替代模型的燃烧机理能很好地描述RP-3煤油的高温点火特性.  相似文献   

5.
在激波管上进行了气相十氢萘/空气混合物的着火延迟测量, 着火温度为950-1395 K, 着火压力为1.82×105-16.56×105 Pa, 化学计量比分别为0.5、1.0 和2.0. 在侧窗处利用反射激波压力和CH*发射光来测出着火延迟时间. 系统研究了着火温度、着火压力和化学计量比对十氢萘着火延迟时间的影响. 实验结果显示着火温度和着火压力的升高均会缩短着火延迟时间. 首次在相对高和低压的条件下观察到了化学计量比对十氢萘着火延迟的影响是完全相反的. 当压力为15.15×105 Pa时, 富油混合物呈现出最短的着火延迟时间, 而贫油混合物的着火延迟时间却是最长的. 相反, 当压力为2.02×105 Pa时, 富油混合物的着火延迟时间最长. 着火延迟数据与已有的动力学机理的预测值进行对比, 结果显示机理在所有的实验条件下均很好地预测了实验着火延时趋势. 为了探明化学计量比对着火延迟时间影响的本质, 对高、低压条件下的着火延时进行了敏感度分析.结果显示, 压力为2.02×105 Pa时, 控制着火延迟的关键反应为H+O2=OH+O, 而涉及十氢萘及其相应自由基的反应在15.15×105 Pa时对着火延迟起主要作用.  相似文献   

6.
正十一烷/空气在宽温度范围下着火延迟的激波管研究   总被引:2,自引:0,他引:2  
在加热激波管上测量了气相正十一烷/空气混合物的着火延迟时间,着火温度为宽温度范围731-1399 K,着火压力在2.02 × 105和10.10 × 105 Pa附近,化学计量比分别为0.5、1.0和2.0。通过监测管侧壁观测点处的反射激波压力和OH*发射光测出着火延迟时间。实验结果显示:在910 K以上,着火延迟时间随着火温度的降低而变长,从910到780 K,着火延迟时间随着火温度的降低而变短(显示出了负温度系数效应),在780 K以下,着火延迟时间随着火温度的降低再次变长。在所研究的压力下,着火压力的增加使着火时间变短。化学计量比对着火延迟的影响在着火压力为2.02 × 105和10.10 × 105 Pa时是不同的,与在高温区相比,着火延迟在低温区对化学计量比非常敏感。在整个温度范围内,当前实验结果和LLNL(LawrenceLivermore National Laboratory)机理的预测值表现出了很好的一致性。现在的正十一烷/空气的着火数据和先前实验测量的正庚烷/空气、正癸烷/空气和正十二烷/空气的着火延迟时间相比较显示了着火延迟时间随着直链烷碳原子数的增加而减小。敏感度分析显示,高、低温条件下影响正十一烷着火延迟过程的反应是显著不同的。在高温条件下起最大促进作用的反应是H + O2=O+OH,然而在低温条件下,起最大促进作用的反应是过氧十一烷基(C11H23O2)的异构化反应。本文研究首次提供了正十一烷/空气的激波管着火延迟时间。  相似文献   

7.
选取2017年8月~2019年2月我院收治的胃癌患者130例作为研究对象,依据患者病理诊断结果作为金标准,分析磁共振成像(magnetic resonance imaging,MRI)与超声双重造影对胃癌的诊断价值及术前T分期的价值。结果显示,超声双重造影共检出120例胃癌患者,出现10例漏诊,MRI共检出109例胃癌患者,出现21例漏诊。金标准共检出52例T1期、32例T2期、26例T3期、20例T4期患者,超声双重造影诊断出T1期48例,符合率92.31%;T2期30例,符合率93.75%;T3期24例,符合率92.31%;T4期18例,符合率90.00%,进一步分析显示,超声双重造影对不同胃癌T分期的诊断价值均高于MRI。因此,超声双重造影对胃癌的诊断价值及对术前T分期诊断价值均高于MRI。  相似文献   

8.
为研究老年人彩色视觉频率响应特性,获取彩度对比敏感度与空间频率之间的函数关系,本文在LCH均匀颜色空间基础上,固定明度和色调角值,以彩度作为变量,设计人眼彩度对比敏感度实验,进行人眼视觉观察实验。获得彩度对比敏感度与空间频率的关系,并构建指数型对比敏感度函数模型。经分析表明老年人眼彩度对比敏感度随着空间频率的增加,产生先升高再缓慢降低的变化,各色调角下彩度对比度存在差异。经分析人眼对比敏感度差异与人眼视觉辨色特性有很大的相关性。并且,将构建的对比敏感度函数模型用于实现基于人眼视觉系统的滤波处理。  相似文献   

9.
化学发光分析和生物发光分析的新进展   总被引:2,自引:0,他引:2  
  相似文献   

10.
作者首先叙述了分析化学的源起,认为这门科学与人类文明文化,如青铜、黄铜冶炼、酿酒等大有关系。继出现东、西方的丹金术、欧洲中世纪的大试金术。后者可称为现代分析化学的前驱。适十七八世纪现代化学之兴起,分析化学起了主要作用。嗣后重量法、容量法、比色法、分光光度法、发射光谱法、极谱法、质谱法、层析法等等相继出现。这些方法可分为两大类——即化学法和仪器法。二者各有其优缺点;需要相辅相成,而决不是对立、排挤。另一方面,常量法之后又出现微量法和痕量分析。最后为分析化学在我国健康成长提出一些看法和意见。  相似文献   

11.
甲基肼/四氧化二氮反应化学动力学模型构建及分析   总被引:1,自引:0,他引:1  
甲基肼(MMH)和四氧化二氮(NTO)是常用的液体火箭发动机推进剂,但目前对其反应机理的研究还十分有限.本文首先构建了一个包含23种组分和20个基元反应的MMH/NTO反应动力学模型;对MMH/NTO自燃着火过程进行的验证计算表明,该机理能够合理地描述MMH/NTO的自燃温升过程,准确预测反应物系统的着火延迟时间及平衡温度,并能合理地反映MMH/NTO反应物系统着火延迟时间对反应初始压力以及氧燃比的依赖关系;通过灵敏度分析方法指出了影响MMH/NTO着火过程的关键反应.模拟分析了在不同压力和氧燃比条件下MMH/NTO系统的自燃温升过程,结果表明,随着压力的升高,系统着火延迟时间变短,平衡温度升高;在一定范围内增大氧燃比,着火延迟时间变长,平衡温度先升高后减小.  相似文献   

12.
Applications of global uncertainty methods for models with correlated parameters are essential to investigate chemical kinetics models. A global sensitivity analysis method is presented that is able to handle correlated parameter sets. It is based on the coupling of the Rosenblatt transformation with an optimized Random Sampling High Dimensional Model Representation method. The accuracy of the computational method was tested on a series of examples where the analytical solution was available. The capabilities of the method were also investigated by exploring the effect of the uncertainty of rate parameters of a syngas–air combustion mechanism on the calculated ignition delay times. Most of the parameters have large correlated sensitivity indices and the correlation between the parameters has a high influence on the results. It was demonstrated that the values of the calculated total correlated and final marginal sensitivity indices are independent of the order of the decorrelation steps. The final marginal sensitivity indices are meaningful for the investigation of the chemical significance of the reaction steps. The parameters belonging to five elementary reactions only, have significant final marginal sensitivity indices. Local sensitivity indices for correlated parameters were defined which are the linear equivalents of the global ones. The results of the global sensitivity analysis were compared with the corresponding results of local sensitivity analysis for the case of the syngas–air combustion system. The same set of reactions was indicated to be important by both approaches.  相似文献   

13.
Uncertainty analysis is a useful tool for inspecting and improving detailed kinetic mechanisms because it can identify the greatest sources of model output error. Owing to the very nonlinear relationship between kinetic and thermodynamic parameters and computed concentrations, model predictions can be extremely sensitive to uncertainties in some parameters while uncertainties in other parameters can be irrelevant. Error propagation becomes even more convoluted in automatically generated kinetic models, where input uncertainties are correlated through kinetic rate rules and thermodynamic group values. Local and global uncertainty analyses were implemented and used to analyze error propagation in Reaction Mechanism Generator (RMG), an open-source software for generating kinetic models. A framework for automatically assigning parameter uncertainties to estimated thermodynamics and kinetics was created, enabling tracking of correlated uncertainties. Local first-order uncertainty propagation was implemented using sensitivities computed natively within RMG. Global uncertainty analysis was implemented using adaptive Smolyak pseudospectral approximations as implemented in the MIT Uncertainty Quantification Library to efficiently compute and construct polynomial chaos expansions to approximate the dependence of outputs on a subset of uncertain inputs. Cantera was used as a backend for simulating the reactor system in the global analysis. Analyses were performed for a phenyldodecane pyrolysis model. Local and global methods demonstrated similar trends; however, many uncertainties were significantly overestimated by the local analysis. Both local and global analyses show that correlated uncertainties based on kinetic rate rules and thermochemical groups drastically reduce a model's degrees of freedom and have a large impact on the determination of the most influential input parameters. These results highlight the necessity of incorporating uncertainty analysis in the mechanism generation workflow.  相似文献   

14.
Regularized random-sampling high dimensional model representation (RS-HDMR)   总被引:1,自引:0,他引:1  
High Dimensional Model Representation (HDMR) is under active development as a set of quantitative model assessment and analysis tools for capturing high-dimensional input–output system behavior. HDMR is based on a hierarchy of component functions of increasing dimensions. The Random-Sampling High Dimensional Model Representation (RS-HDMR) is a practical approach to HDMR utilizing random sampling of the input variables. To reduce the sampling effort, the RS-HDMR component functions are approximated in terms of a suitable set of basis functions, for instance, orthonormal polynomials. Oscillation of the outcome from the resultant orthonormal polynomial expansion can occur producing interpolation error, especially on the input domain boundary, when the sample size is not large. To reduce this error, a regularization method is introduced. After regularization, the resultant RS-HDMR component functions are smoother and have better prediction accuracy, especially for small sample sizes (e.g., often few hundred). The ignition time of a homogeneous H2/air combustion system within the range of initial temperature, 1000 < T 0 < 1500 K, pressure, 0.1 < P < 100 atm and equivalence ratio of H2/O2, 0.2 < R < 10 is used for testing the regularized RS-HDMR.   相似文献   

15.
Sensitivity analysis is one of the most widely used tools in kinetic modeling. Typically, it is performed by perturbing the A‐factors of the individual reaction rate coefficients and monitoring the effect of these perturbations on the observables of interest. However, the sensitivity coefficients obtained in this manner do not contain direct information on possible temperature‐dependent effects. Yet, in many combustion processes, especially in premixed flames, the system undergoes substantial temperature changes, and the relative importance of individual reaction rates may vary significantly within the flame. An extension of conventional sensitivity analysis developed in the present work provides the means of identifying the temperatures at which individual reaction rate coefficients are most important as a function of input parameters and specific experimental conditions. The obtained information is demonstrated to be of critical relevance in optimizing complex reaction schemes against multiple experimental targets. Applications of the presented approach are not limited to sensitivities with respect to reaction rate coefficients; the method can be used for any temperature‐dependent property of interest (such as binary diffusion coefficients). This application is also demonstrated in this paper. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 282–295, 2005  相似文献   

16.
IntroductionThe phenomenon of catalytic combustion was firstdiscovered in 1817 when Humphry Davy observed thatPt wires could promote combustion reactions in flamma-ble mixtures. Since then, considerable efforts havebeen focused on the application of catal…  相似文献   

17.
基于化学同时平衡原理,提出复杂反应体系的极小反应网络方法(MRN),在指定中间物种数目条件下,构建反应步数最小的详细燃烧反应机理.确定了8个物种的氢氧燃烧的6个独立反应,对缺乏动力学参数的独立反应进行组合替代,反应速率常数采用Arrhenius双参数形式.采用构建的9步反应氢氧燃烧机理(MRN-C0)进行了点火延迟时间和层流火焰速度的模拟.  相似文献   

18.
We propose a new method for constructing kinetic response surfaces used in the development and optimization of gas‐phase and surface reaction kinetic models. The method, termed as the sensitivity analysis based (SAB) method, is based on a multivariate Taylor expansion of model response with respect to model parameters, neglecting terms higher than the second order. The expansion coefficients are obtained by a first‐order local sensitivity analysis. Tests are made for gas‐phase combustion reaction models. The results show that the response surface obtained with the SAB method is as accurate as the factorial design method traditionally used in reaction model optimization. The SAB method, however, presents significant computational savings compared to factorial design. The effect of including the partial and full third order terms was also examined and discussed. The SAB method is applied to optimization of a relatively complex surface reaction mechanism where large uncertainty in rate parameters exists. The example chosen is laser‐induced fluorescence signal of OH desorption from a platinum foil in the water/oxygen reaction at low pressures. We introduce an iterative solution mapping and optimization approach for improved accuracy. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 94–106, 2004  相似文献   

19.
The purpose of this paper is to show the application of global uncertainty analysis to comprehensive and reduced kinetic models as a tool to identify important thermochemical and reaction rate parameters as determinants of the conditions leading to autoignition. Propane oxidation is taken as the test case. The simulation of experimental investigations of the cool flames and two-stage ignitions, via the pressure-temperature ignition diagram, show that existing kinetic models for the low temperature combustion of propane at sub-atmospheric pressures reflect a greater reactivity than seems to be appropriate. That is, the models lead to a prediction of two-stage ignition at pressures somewhat lower and with ignition delays shorter than is found experimentally. The inconsistency between experiment and numerical simulation seems not to be an inherent problem of the qualitative structure of the models, but may derive from uncertainties in the parameters within the mechanism. By use of "brute force", Morris-one-at-a-time and Monte-Carlo simulations, we show that uncertainties in only a small number of parameters, and falling well within the errors that may reasonably be assigned, can shift the response appropriately. Moreover, it appears that in the low temperature combustion regime, thermochemistry is at least as, if not more, important than the reaction rates, yet usually receives less attention within sensitivity studies. In the present case, the main factors controlling the temperature reached in the first stage of two-stage ignition and the time to ignition appear to be connected with the thermochemistry of three specific hydroperoxyalkyl radicals and their derivatives. Other factors, such as heat and mass transport are also addressed, and their effects are mitigated to some extent by evaluation of initial and revised models against experimental data for ignition delay obtained under microgravity. The results highlight more general issues that pertain to the numerical simulation of the combustion of higher hydrocarbons and contribute to the development of the protocol necessary for testing kinetic models before they are ready for use in a predictive capacity.  相似文献   

20.
The requirements for improving the efficiency of internal combustion engines and reducing emissions have promoted the development of new combustion technologies under extreme operating conditions (e.g., lean combustion), and the ignition and combustion characteristics of fuels are increasingly becoming important. A chemical kinetic reduced mechanism consisting of 115 species and 414 elementary reactions is developed for the prediction of ignition and combustion behaviors of gasoline surrogate fuels composed of five components, namely, isooctane, n-heptane, toluene, diisobutylene, and cyclohexane (CHX). The CHX sub-mechanism is obtained by simplifying the JetSurF2.0 mechanism using direct relationship graph error propagating, rate of production analysis, and temperature sensitivity analysis and CHX is mainly consumed through ring-opening reactions, continuous dehydrogenation, and oxygenation reactions. In addition, kinetic parameter corrections were made for key reactions R14 and R391 based on the accuracy of the ignition delay time and laminar flame velocity predictions. Under a wide range of conditions, the mechanism’s ignition delay time, laminar flame speed, and the experimental and calculated results of multi-component gasoline surrogate fuel and real gasoline are compared. The proposed mechanism can accurately reproduce the combustion and oxidation of each component of the gasoline-surrogate fuel mixture and real gasoline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号