首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of gases and volatiles during Sulcis coal pyrolysis under different atmospheres (N2 and H2) was investigated to obtaining a clean feedstock of combustion/gasification for electric power generation. Raw coal samples were slowly heated in temperature programmed mode up to 800 °C at ambient pressure using a laboratory-scale quartz furnace coupled to a Fourier transform infrared spectrometer (FTIR) for evolved gas analysis. Under both pyrolysis and hydropyrolysis conditions the evolution of gases started at temperature as low as 100 °C and was mainly composed by CO and CO2 as gaseous products. With increasing temperature SO2, COS, and light aliphatic gases (CH4 and C2H4) were also released. The release of SO2 took place up to 300 °C regardless of the pyrolysis atmosphere, whilst the COS emissions were affected by the surrounding environment. Carbon oxide, CO2, and CH4 continuously evolved up to 800 °C, showing similar release pathways in both N2 and H2 atmospheres. Trace of HCNO was detected at low pyrolysis temperature solely in pure H2 stream. Finally, the solid residues of pyrolysis (chars) were subjected to reaction with H2 to produce CH4 at 800 °C under 5.0 MPa pressure. The chars reactivity was found to be dependent on pyrolysis atmosphere, being the carbon conversions of 36% and 16% for charN2 and charH2, respectively.  相似文献   

2.
The coal samples were collected from Yima coal district, China. The pyrolysis experiments were carried out in a simulated bed quartz reactor with a heating rate of 20 °C/min. The 44 elements in raw coal and chars were determined by inductively coupled-plasma mass spectrometry instrument (ICP-MS). The release and enrichment behavior of 44 trace elements during coal pyrolysis of Yima coal was studied.According to the transformation behaviors, chemical features and thermal features under different pyrolysis temperatures, the 44 elements can be categorized to 4 groups: light elements (Li and Be), nonmetal elements (Se, As, B, etc.), heavy metal elements (including 24 elements, Cu, V, Co, etc.) and rear earth elements (REE) (14 elements). The results showed that (1) the higher pyrolysis temperatures, the higher release ratio and release ratio of REE are very low; (2) the enrichment ratios of the elements in chars increase by the sequence of nonmetal elements < light elements < heavy metal elements < REE. The nonmetal elements, light elements and a few heavy metal elements will be emitted out from coal during coal pyrolysis and they will pollute environment.  相似文献   

3.
A simple and fast method based on graphite furnace atomic absorption spectrometry (GF AAS) and slurry sampling technique (SlS) was developed to determine trace Cd, Co and Pb in high-sulphur coal (Sulcis, Italy) and coal chars derived at 600, 750 and 950 °C under N2 atmosphere for developing a clean coal for electricity production. The proposed method was then coupled to a four-step sequential chemical extraction method for assessment of metals distribution in coaled samples. The slurries were prepared by varying sample mass (1–50 mg), volume (1–3 mL) and kind of dispersing medium (1% v/v Triton X-100 and 2 N HNO3), and sonication time (5–30 min). Pyrolysis/atomization temperatures as well carrier gas flow rate were optimised. Pd(NO3)2 and NH4H2PO4 were employed to stabilize Cd and Pb, respectively, in the pyrolysis stage of furnace program. The use of HNO3 as dispersing agent was found to be effective in lowering the high level of background absorption on the Cd analytical signal produced by raw coal matrix. Conversely, coal charred samples did not show significantly level of background interferences, so that Triton X-100 dispersing agent could be used for all analytes. Calibration curve against acid-matched standards was allowed for Cd, whereas the standard addition calibration was used for Co and Pb owing to chemical matrix interferences. The precision, expressed as relative standard deviation (% RSD, n = 5), was better than 5% for Cd, Co, and Pb at 1, 10, and 15 μg L? 1 levels, respectively. The accuracy of the analytical method was checked by analyzing a BCR No. 182 steam coal certificated reference material and the results were in good agreement with certificated and informed values. The solid detection limits (3σblank) were as low as 0.001 Cd, 0.01 Co, and 0.01 Pb mg kg? 1, using 30 mg sample mass and slurry concentration of 30 m v? 1 for Cd, and 50 mg sample mass and 50 m v? 1 slurry concentration for Co and Pb. The content of elements in Sulcis coal was found to be 0.33 Cd, 4.0 Co, and 3.8 Pb mg kg? 1 and mostly associated to sulphates and di-sulphides as indicated by the leaching test. Under pyrolysis conditions Cd significantly volatilised (about 64%) at temperature higher than 600 °C, whereas residue chars at 950 °C are enriched in Co and Pb up to 20%. The proposed method is suitable for routine metals monitoring in coaled samples.  相似文献   

4.
In this study, the upgrading by torrefaction of leucaena, woody biomass, at 200–250 °C under volumetric pressure up to 4 MPa was examined. It was found that the yield of torrefied leucaena decreased with the increase in torrefaction temperature, whereas at the same temperature the yield of torrefied leucaena increased with the increase in torrefaction pressure. From the elemental analyses, the higher carbon content in torrefied leucaena can be achieved by the rising of torrefaction pressure. As large as 92.6% of carbon was recovered in the torrefied leucaena prepared at 250 °C and 4 MPa. On the other hand, the oxygen content decreased to 31.1% for the leucaena torrefied at 250 °C and 4 MPa. The higher heating value (HHV) of leucaena torrefied at high pressure increased significantly when compared to that of leucaena torrefied at atmospheric pressure. As large as 94.3% of energy yield was achieved with the mass yield of 74.4% for the torrefaction at 250 °C and 4 MPa. From the subsequent pyrolysis and combustion in TGA, leucaena torrefied under pressure showed the difference of weight decreasing curves comparing to that of leucaena torrefied at atmospheric pressure. It was found that the weight of leucaena torrefied at high pressure started to decrease at temperature lower than 200 °C. The char yield at 800 °C for the leucaena torrefied at high pressure increased with the increase in torrefaction pressure. These results suggested that the structure of leucaena was changed by the torrefaction under pressure and the cross-linking reactions during the pyrolysis were enhanced by the pressure during the torrefaction resulting in increase in char yields. The substantial increase in char combustion rate was also found for leucaena torrefied under pressure.  相似文献   

5.
In this work, hydrolytic reaction conditions of various temperatures (300–370 °C) and times (0–30 min) at a constant pressure of 20 MPa were applied to the thermal decomposition of three kinds of fatty acids (FAs), stearic acid, oleic acid, and linoleic acid, in subcritical water. The degradation characteristics were investigated from the derived data, and the thermal stability of FAs in subcritical water was estimated. The primary reactions we observed were isomerization and pyrolysis of FAs. The main pathway of degradation was deduced by analyzing the contents of pyrolyzed products. We found that more saturated FAs have greater thermal stability in subcritical water. All FAs remained stable at 300 °C or below. Based on these results, we recommend that hydrolysis of vegetable oils and fats using subcritical water should be carried out below 300 °C (at 20 MPa) and for less than 30 min to obtain high-yield FA production.  相似文献   

6.
A technique has been developed to study cellulose pyrolysis by in situ visualization of cellulose transformation in a quartz capillary under a microscope using a CCD camera monitoring system and Raman spectroscopy. The processes and temperature of cellulose transformation during pyrolysis reaction can be observed directly. In situ visualization of reaction revealed that how oil is generated and expulsed concurrently from cellulose during pyrolysis. The in situ visualization result is the first direct evidence to show cellulose pyrolysis transformation. Pyrolysis characteristics were investigated under a highly purified N2 atmosphere using a thermogravimetric analyzer from room temperature to 500 °C at the heating rate of 5 °C/min. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent activation energy and pre-exponential factor were determined.  相似文献   

7.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

8.
The pressure shift assay (PSA, also termed either PressureFluor or differential pressure fluorimetry) was used to study the thermodynamics of decanoate and dodecanoate lipid binding to human serum albumin (HSA) in the temperature range from 25 °C to 80 °C and the pressure range from 0.1 MPa to 400 MPa. The ligands stabilized HSA against both pressure and temperature denaturation. The PT phase diagram for HSA bound to saturated fatty acids is shown. Pressure induced HSA denaturation reversibility is demonstrated via either intrinsic tryptophan or extrinsic probe 1,8-anilinonaphthalene sulfonate (ANS) fluorescence. The effect of guanidinium in a PSA was studied. PSA provides information on ligand binding volumes. The volume changes from protein–ligand binding are thermodynamically important and could be used in designing compounds with specific volumetric binding properties.  相似文献   

9.
New energy policies all over the world are trying to tackle high oil prices and climate change by promoting the use of biomass to produce heat, electricity and liquid transportation fuels. In this paper we studied two different secondary fuels: dry distiller's grains with solubles (DDGS) and chicken manure. These materials have high content of nitrogen and ashes which limit their usage in thermal applications due to potential excessive NOx emissions and problems of slagging, fouling, corrosion and loss of fluidization.The fuels tested here were received from industrial partners. In order to reduce the ash content the fuels were pre-treated using water leaching pre-treatment.Pyrolysis of these fuels has been monitored through a TG-FTIR set-up. Quantification of the following volatile species was possible: CO, CO2, CH4, HCN, NH3, HNCO, H2O.The water leaching appeared to decrease the amount of ashes in both samples and remove some of the troublesome compounds like Cl, S and K.The DDGS thermogravimetric curve showed three main peaks at 280 °C, 330 °C and 402 °C with a total weight loss of around 79%wta.r. (on an “as received” basis). NH3 is the main N-compound released at low temperatures with a peak at 319 °C. HNCO and HCN were detected at higher temperatures of around 400 °C. Chicken manure reacted in four stages with peaks at 280 °C, 324 °C, 430 °C and 472 °C with a total average weight loss of 66%wta.r. The main N-compound was HNCO, released at 430 °C. Ammonia was detected during the whole measurement, while HCN presented peaks of reactivity at 430 °C and 472 °C.Kinetic analysis was applied using a distributed activation energy method (DAEM) using discrete and Gaussian distributions and data for further modeling purposes were retrieved and presented.  相似文献   

10.
ZnO nanoparticles were generated by thermal decomposition of a binuclear zinc (II) curcumin complex as single source precursor. Thermal behavior of the precursor showed a considerable weight loss at about 374 °C by an exothermic reaction with a maximum weight loss rate of 14%/min. Complete decomposition of precursor was observed within 49 min with a heating rate of 10 °C/min. Synthesized nanoparticles have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction microscopy. Results revealed monodispersed hexagonal zincite structure with an average size of 117 ± 4 nm.  相似文献   

11.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

12.
《Fluid Phase Equilibria》2004,224(2):271-277
In low temperature gas processing, the presence of water can result in the formation of gas hydrate plugs. To avoid this problem, it is important to know the water solubility in natural gas components in equilibrium with gas hydrate. In this study experimental measurements of water content in gaseous methane in equilibrium with hydrate at 3.45 MPa (500 psia) and 6.90 MPa (1000 psia) and temperatures ranging from −3.2 °C (26.2 °F) to −80 °C (−112 °F) are presented. Similar measurements are presented for liquid ethane at 3.45 MPa (500 psia) and temperatures from −2.2 °C (28.0 °F) to −70 °C (−94 °F), and for liquid propane at 0.86 MPa (125 psia) and temperatures down to −60 °C (−76 °F), respectively.In measuring the water content, a Panametrics moisture sensor (calibrated to 1 ppb water content in nitrogen) has been used in flowing streams of the hydrocarbon-rich phases that are saturated with water. The results obtained with the Panametrics hygrometer show good agreement (normally better than ±4%) with previous measurements, which were obtained by a gas chromatographic technique for methane, ethane, and propane at temperatures ranging from −2.0 °C (28.4 °F) to −30 °C (−22 °F), which are within the hydrate region.  相似文献   

13.
In the present work four different biomass samples (pine cone, soybean cake, corn stalk and peanut shell) were pyrolyzed to 550 °C in an inert gas atmosphere and a comparison between the properties of chars produced has been performed. Characterization of biomass samples was carried out with FT-IR, 13C NMR, SEM and EDX. The influence of the parent material on char quality was investigated. The chars were characterized by their proximate and ultimate analysis and surface areas by N2 adsorption at 77 K using BET equation. The morphological changes in carbonaceous solids were observed by scanning electron microscopy (SEM), and FT-IR spectra were obtained to evaluate the functional groups. The results obtained from the different techniques were combined to give an overview of the chemical and physical properties of the biomass char samples.  相似文献   

14.
Zijuan tea theabrownins (ZTTBs) was extracted from a type of fermented Zijuan tea and separated into fractions according to molecular weight. The extract was found to contain predominantly two fractions: <3.5 kDa and >100 kDa. These two fractions were analyzed for chemical composition, structural characteristics by Curie-point pyrolysis–gas chromatography–mass spectroscopy (CP-Py–GC/MS). The affects of pyrolysis temperature on pyrolytic products were also investigated. The fraction >100 kDa produced 50 GC/MS peaks during pyrolysis at 280 °C, 70 peaks at 386 °C, and 134 peaks at 485 °C. Fourteen of the products formed at 280 °C, 12 of those formed at 386 °C, and 21 of those formed at 485 °C were identified with match qualities of greater than 80%. The fraction <3.5 kDa gave 51 peaks during pyrolysis at 280 °C, 99 peaks at 386 °C, and 257 peaks at 485 °C. Six products formed at 280 °C, four products formed at 386 °C, and 61 products formed at 485 °C were identified with match qualities of greater than 80%. Pyrolysis temperatures of 485 °C and 386 °C were found suitable for the two fractions respectively. CP-Py–GC/MS revealed that, the fraction >100 kDa mainly consisted of phenolic pigments, esters, proteins, and polysaccharides, while the fraction <3.5 kDa contained no polysaccharide. CP-Py–GC/MS is an effective tool for the composition difference and structural characteristics of ZTTBs as well as other complex macromolecular plant pigments.  相似文献   

15.
A novel carbon paper has been prepared by pyrolysis from traditional Japanese paper called washi in Japan, which is mainly composed of cellulose microfibers. The washi was iodine-treated before pyrolysis. The effect of iodine-treatment on pyrolysis of the washi was investigated using thermogravimetric analysis. The structural and electrical properties of the carbon papers were also investigated using Raman scattering, X-ray diffraction, electron microscopy, and resistivity measurements. The iodine-treatment prevents cellulose from thermally decomposing and is effective in increasing the carbon yield and retaining its fibrillar structure. Porous carbon papers consisting of many micro and nanofibrils were prepared by the pyrolysis of the iodine-treated washi at 800 °C. Those prepared at 800 °C and then heat-treated at higher temperatures than 1800 °C show electrical conductivities of 3 S cm−1 and 24–27 S cm−1. The degree of crystallinity and the electrical conductivity of the papers are improved by the heat treatment at higher temperatures.  相似文献   

16.
《Comptes Rendus Chimie》2015,18(11):1198-1204
The Fe catalyst-supported aerosol-assisted synthesis method was used to prepare carbon products of diverse morphologies from toluene. Aerosol mist generation was accomplished with an ultrasonic device. An open-ended quartz boat for powder collection was placed in the maximum temperature zone of the tube reactor (850 °C or 1000 °C). The morphology of the products was studied by SEM and TEM microscopy. Structural characterization was provided by powder XRD, whereas Raman spectroscopy was used to determine the structural quality/homogeneity of the products. The hydrogen gas sorption capacity of the product prepared at 850 °C was relatively high despite its rather moderate BET specific surface area.  相似文献   

17.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

18.
Emissions evolved from the pyrolysis and combustion of polyvinyl chloride (PVC) were studied at four different temperatures (500, 700, 850 and 1000 °C) in a horizontal laboratory tubular quartz reactor in order to analyse the influence of both temperature and reaction atmosphere on the final products from thermal and oxidative reactions. It was observed that the CO2/CO ratio increased with temperature. Methane was the only light hydrocarbon whose yield increased with temperature up to 1000 °C. Benzene was rather stable at high temperatures, but in general, combustion at temperatures above 500 °C was enough to destroy light hydrocarbons. Semivolatile hydrocarbons were collected in XAD-2 resin and more than 160 compounds were detected. Trends on polyaromatic hydrocarbon (PAH) yields showed that most had a maximum at 850 °C in pyrolysis, but naphthalene at 700 °C. Formation of chlorinated aromatics was detected. A detailed analysis of all isomers of chlorobenzenes and chlorophenols was performed. Both of them reached higher total yields in combustion runs, the first ones having a maximum at 700 °C and the latter at 500 °C. Pyrolysis and combustion runs at 850 °C were conducted to study the formation of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs). There was more than 20-fold increase in total yields from pyrolysis to combustion, and PCDF yields represented in each case about 10 times PCDD yields.  相似文献   

19.
Pyrolysis of tobacco, a complex biomass matrix, was investigated to further understand thermal decomposition processes that are accompanied by evaporation of relatively stable non-polymeric endogenous compounds. Pyrolysis of two types of tobacco, bright and burley were studied using thermo-gravimetry mass spectrometry (TG–MS) and field ionization mass spectrometry (FIMS) analyses. Tobacco contains biopolymers and many non-polymeric compounds. Unlike many biomass pyrolysis tars derived from wood or cellulose, tobacco pyrolysis tars can contain significant amounts of high molecular weight endogenous constituents such as waxes and terpenes that are transferred intact. The phenomenon of evaporation of high molecular weight non-polymeric compounds is illustrated by tobacco micro-sample pyrolysis in FIMS under vacuum (at a pressure of 10−4 Torr). These experiments indicate that the evaporation of relatively stable high molecular weight species occurs below about 220 °C generating 300 Da and higher molecular weight products; and, decomposition of tobacco biopolymers such as starch, cellulose, hemicellulose, lignin, and pectin occurs mostly at temperatures higher than 220 °C producing species mostly with molecular weight below 300 Da. Some of the high molecular weight compounds, such as stigmasterol (412 Da), α-tocopherol (430 Da), and solanesol (630 Da), were tentatively identified using the FIMS spectra.  相似文献   

20.
The phase transition of hBN nanocrystals induced by hydrothermal hot-pressing process has been investigated by XRD, FTIR, TEM and HRTEM. It was found that a phase transition of hBN  tBN  aBN occurred with increasing hot-pressing temperature, i.e., hBN transformed into tBN at above 270 °C, and followed by another transformation from tBN to aBN at 310 °C. In addition, FTIR spectra and HRTEM images indicate that a small amount of cBN formed directly from the amorphous BN matrix at 75 MPa and 310 °C. This phenomenon is similar to what happened in conventional high temperature and high pressure method, which is believed to promote the phase transition from hBN to cBN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号