首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of lithium hexa(carboxylato)ferrate(III) precursors, (Li3[Fe(L)6xH2O, L = formate, acetate, propionate, butyrate), has been carried out in flowing air atmosphere from ambient temperature upto 500 °C. Various physico-chemical techniques, i.e., TG, DTG, DTA, XRD, SEM, IR, Mössbauer spectroscopy, etc., have been employed to characterize the intermediates and end products. After dehydration, the anhydrous complexes undergo decomposition to yield various intermediates, i.e., lithium oxalate/acetate/propionate/butyrate, ferrous oxalate/acetate and α-Fe2O3 in the temperature range of 185–240 °C. A subsequent decomposition of these intermediates leads to the formation of nanosized lithium ferrite (LiFeO2). Ferrites have been obtained at much lower temperature (255–310 °C) as compared to conventional ceramic method. The same nano-ferrite has also been prepared by the combustion method at a comparatively lower temperature (400 °C) and in less time than that of conventional ceramic method.  相似文献   

2.
The thermolysis of potassium hexa(carboxylato)ferrate(III) precursors, K3[Fe(L)6xH2O (L=formate, acetate, propionate, butyrate), has been carried out in flowing air atmosphere from ambient temperature to 900°C. Various physico-chemical techniques i.e. TG, DTG, DTA, XRD, IR, Mössbauer spectroscopy etc. have been employed to characterize the intermediates and end products. After dehydration, the anhydrous complexes undergo exothermic decomposition to yield various intermediates i.e. potassium carbonate/acetate/propionate/butyrate and α-Fe2O3. A subsequent decomposition of these intermediates leads to the formation of potassium ferrite (KFeO2) above 700°C. The same ferrite has also been prepared by the combustion method at a comparatively lower temperature (600°C) and in less time than that of conventional ceramic method.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(11):1205-1210
Nickel–aluminium and magnesium–aluminium hydrotalcites were prepared by co-precipitation and subsequently submitted to calcination. The mixed oxides obtained from the thermal decomposition of the synthesized materials were characterized by XRD, H2-TPR, N2 sorption and elemental analysis and subsequently tested in the reaction of methane dry reforming (DRM) in the presence of excess of methane (CH4/CO2/Ar = 2/1/7). DMR in the presence of the nickel-containing hydrotalcite-derived material showed CH4 and CO2 conversions of ca. 50% at 550 °C. The high values of the H2/CO molar ratio indicate that at 550 °C methane decomposition was strongly influencing the DRM process. The sample reduced at 900 °C showed better catalytic performance than the sample activated at 550 °C. The catalytic performance in isothermal conditions from 550 °C to 750 °C was also determined.  相似文献   

4.
The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous propionate to Lu2O2CO3 with evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 °C and 400 °C. The further decomposition of Lu2O2CO3 to Lu2O3 is characterized by an intermediate constant mass plateau corresponding to a Lu2O2.5(CO3)0.5 overall composition and extending from approximately 550 °C to 720 °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O.  相似文献   

5.
An enantioselective membrane was prepared using cellulose acetate butyrate as a membrane material. The flux and permselective properties of membrane using 50% ethanol solution of (R,S)-trans-stilbene oxide as feed solution were studied. The top surface and cross-section morphology of the resulting membrane were examined by scanning electron microscopy. The resolution of over 92% enantiomeric excess was achieved when the enantioselective membrane was prepared with 15 wt % cellulose acetate butyrate and 30 wt % N,N-dimethylformamide in the casting solution of acetone, 10 °C temperature of water bath for the gelation of the membrane, and the operating pressure and the feed concentration of the trans-stilbene oxide were 3 kgf/cm2 and 5.2 mmol/L, respectively. Since the cellulose acetate butyrate contained a large amount of asymmetric carbons on the backbone structure, it was possible to form helical structure, this was considered to be the reason for the enantioselectivity of the membrane.  相似文献   

6.
TiO2@Sn core–shell nanotube material prepared by thermal decomposition of SnCl4 on TiO2 nanotubes at 300 °C has been demonstrated superior Li-ion storage capability of 176 mA h/g even at high current rate of 4000 mA/g (charge and discharge of all TiO2 within 5 min) in spite of using low carbon content (5 wt%). This value corresponds to volumetric energy densities of 317 mA h/cm3, and its value was 3.5-fold larger than that of the bare TiO2 nanotubes.  相似文献   

7.
《Solid State Sciences》2001,3(4):495-502
The stability of yttrium silicate apatite has been investigated by studying the influence of iron as a “stabilising cation” and also by using different synthesis routes. The formation of apatite in samples has been followed by X-ray diffraction and by 29Si MAS NMR spectroscopy. The apatite phase appears to be stable at high temperatures (≈1700 °C) especially when heated in a nitrogen atmosphere; it can also occur in a metastable state when heated in air at lower temperatures; ≈1600 °C if prepared from a Y2O3SiO2 mixture or in the range 950 °C <T< 1150 °C if synthesised by the sol–gel process. Longer heat-treatments result in its decomposition into Y2Si2O7 and Y2SiO5. Iron appears to have two roles depending on the temperature; it stabilises the apatite phase at high temperatures when produced by the sol–gel route and catalyses the decomposition of sol–gel derived apatite at low temperatures.  相似文献   

8.
Thermal decomposition of an amorphous precursor for sulfur-doped titania (S:TiO2) nanopowders, prepared by controlled sol–gel hydrolysis-condensation of titanium(IV) tetrabutoxide and thiourea in aqueous butanol, has been studied in situ up to 850 °C in flowing air by simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA–MS) and FTIR spectrometric gas cell (TG–FTIR) for analysis of gases and their evolution dynamics in order to explore and simulate thermal annealing processes of fabrication techniques aimed S:TiO2 photocatalysts with photocatalytic activities under visible light.The studied S-doped precursor's decomposition course remembers to that of non-doped xerogel from Ti(IV)-n-butoxide, which seems to retard a considerable amount of organics in the solid phase even at high temperature, probably in polymeric forms, proven by evolution of CO2 in several temperature regions of decomposition stages. The incorporation form of thiourea in the original xerogel seems to be chemically bounded, resulting lower decomposition temperature than that of pure thiourea, and producing evolution of carbonyl sulfide (COS) already between 120 and 190 °C. Nevertheless, evolution of SO2, and that of CO2 is also observed above 500 °C by both EGA detection methods. The latter observation implies that the blackish grey samples obtained even at 750 °C might be simultaneously S- and C-doped ones.  相似文献   

9.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

10.
The mixed metal oxalate precursors, calcium(II)bis(oxalato)cobaltate(II)hydrate (COC), strontium(II)bis(oxalato)cobaltate(II)pentahydrate (SOC) and barium(II)bis(oxalato)cobaltate(II)octahydrate (BOC) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR spectral and X-ray powder diffraction studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound COC decomposed mainly to CaC2O4 and Co3O4 at 340 °C, and a mixture of CaCO3 and Co3O4 identified at 510 °C. A mixture of CaCO3 and Ca3Co2O6 along with the oxides and carbides of both the cobalt and calcium were attributed at 1000 °C as end products. DSC study in nitrogen ascertained the formation of a mixture of CaO and CoO along with a trace of carbon at 550 °C. The mixture species, SrC2O4, CoC2O4 and Co3O4 were generated at 255 °C in case of SOC in air, which ultimately changed to CoSrO3, SrCO3 and oxides of strontium and cobalt at 1000 °C. The several mixture species also generated as intermediate at 332 and 532 °C. The DSC study in nitrogen indicated the formation of CoSrOx (0.5 < x < 1) as end product. In case of BOC in air, a mixture of BaCoO2, BaO, CoO and carbides are identified as end product at 1000 °C through the generation of several intermediate species at 350 and 530 °C. A mixture of BaO and CoO is identified as end product in DSC study in nitrogen. The kinetic parameters have been evaluated for all the dehydration and decomposition steps of all the three compounds using four non-mechanistic equations. Using seven mechanistic equations, the kind of dominance of kinetic control mechanism of the dehydration and decomposition steps are also inferred. The kinetic parameters, ΔH and ΔS of all the steps are explored from the DSC studies. Some of the decomposition products are identified by IR and X-ray powder diffraction studies.  相似文献   

11.
A practical procedure for catalytic asymmetric synthesis of optically active arylglycine derivatives via optically active α-aminonitriles has been developed. The N-benzhydryl α-arylaminonitrile intermediates were prepared in excellent yield (89–99%) and enantiomeric purity (96 to >98% ee) by enantioselective cyanation of aldimines with TMSCN/iPrOH in the presence of 2.5 mol % of an easily prepared Ti/chiral amino alcohol complex at 0 °C, without requiring slow addition of the cyanating agent. The easily racemized α-aminonitrile intermediates were efficiently hydrolyzed by an aqueous HCl/TFA mixture to give the arylglycine derivatives in good yield (60–92%) and moderate to excellent enantiomeric purity (85–98% ee).  相似文献   

12.
BaBiNb2O9 (BBN) powders in the nanometer range were prepared by chemical precursor decomposition method (CPD). TG–DTA showed that precursor sample got freed from organic contaminants at 575 °C. XRD showed that a single phase with the layered perovskite structure of BBN was formed after calcining at 600 °C. No intermediate phase was found during heat treatment at and above 600 °C. The crystallite size (D) and the effective strain (η) were found to be 26 nm and 0.000867, respectively, while the particle size obtained from TEM was 28 ± 2 nm. SEM revealed that the average grain size after sintering at 900 °C for 4 h was ∼1.67 μm. A relative density of ∼93% was obtained using a two-step sintering process at moderate pressure. Dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C and frequencies from 1 kHz to 5 MHz. Strong dispersion of the complex relative dielectric constant was observed including typical relaxor features such as shift of permittivity maximum with frequency and broadening of the peak maximum. The high dielectric constant of 545 measured at 100 kHz and other properties of BBN ceramics were compared to that of BBN prepared by other conventional methods and found to be superior.  相似文献   

13.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

14.
New fluorite-type solid solution domains have been evidenced in the system Y6(W,Mo)(O,N)12 using precursors prepared by the amorphous citrate route. The oxynitrides as well as the low temperature oxides (600 °C) crystallize in a cubic-type symmetry while the oxides annealed above 1200 °C exhibit a rhombohedral symmetry. Either cationic (W/Mo) or anionic (O/N) substitutions bring the possibility to tune the optical absorption of the yttrium tungstate Y6WO12, which potential as inorganic UV absorbers is discussed.  相似文献   

15.
A polymeric blend has been prepared using urea formaldehyde (UF) and epoxy (DGEBA) resin in 1:1 mass ratio. The thermal degradation of UF/epoxy resin blend (UFE) was investigated by using thermogravimetric analyses (TGA), coupled with FTIR and MS. The results of TGA revealed that the pyrolysis process can be divided into three stages: drying process, fast thermal decomposition and cracking of the sample. There were no solid products except ash content for UFE during combustion at high temperature. The total mass loss during pyrolysis at 775 °C is found to be 97.32%, while 54.14% of the original mass was lost in the second stage between 225 °C and 400 °C. It is observed that the activation energy of the second stage degradation during combustion (6.23 × 10−4 J mol−1) is more than that of pyrolysis (5.89 × 10−4 J mol−1). The emissions of CO2, CO, H2O, HCN, HNCO, and NH3 are identified during thermal degradation of UFE.  相似文献   

16.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

17.
New phases with initial composition (1 ? x)CaTiO3 ? xNaF ? xMgF2 (0  x  0.20) have been prepared at low temperature (950 °C) from mixtures of CaTiO3 and fluorides NaF and MgF2. The oxyfluorides obtained have been characterized by X-ray diffraction at room temperature and indexed by isotypy with orthorhombic CaTiO3. The microstructures of these phases are observed by scanning electron microscopy. Dielectric measurements have been carried out during cooling cycle from 500 °C to room temperature at two frequencies (100 Hz, 1 kHz). Differential scanning calorimetry (DSC), thermogravimetry (TG) and differential thermogravimetry (DTG) analyses have been performed, respectively, from room temperature up to 550 °C (DSC) and 920 °C (TG–DTG). The dielectric measurements revealed two anomalies which have been confirmed by DSC analyses. These phenomena are ascribed to second order phase transitions. The variation of the real permittivity with temperature is in agreement with the class I capacitor specifications. However, the dielectric losses have to be improved.  相似文献   

18.
The low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte (1.0 M LiPF6/EC+DMC+DEC+EMC (1:1:1:3, v/v)) was studied. The discharge capacities of the LiFePO4/C cathode were about 134.5 mAh/g (20 °C), 114 mAh/g (0 °C), 90 mAh/g (−20 °C) and 69 mAh/g (−40 °C) using a 1C charge–discharge rate. Cyclic voltammetry measurements show obviously sluggish of the lithium insertion–extraction process of the LiFePO4/C cathode as the operation temperature falls below −20 °C. Electrochemical impedance analyses demonstrate that the sluggish of charge-transfer reaction on the electrolyte/LiFePO4/C interface and the decrease of lithium diffusion capability in the bulk LiFePO4 was the main performance limiting factors at low-temperature.  相似文献   

19.
Novel core–shell SDC (Ce0.8Sm0.2O1.9)/amorphous Na2CO3 nanocomposite was prepared for the first time. The core–shell nanocomposite particles are smaller than 100 nm with amorphous Na2CO3 shell of 4–6 nm in thickness. The nanocomposite electrolyte shows superionic conductivity above 300 °C, where the conductivity reaches over 0.1 S cm−1. Such high conductive nanocomposite has been applied in low-temperature solid oxide fuel cells (LTSOFCs) with an excellent performance of 0.8 W cm−2 at 550 °C. A new potential approach of designing and developing superionic conductors for LTSOFCs was presented to develop interface as ‘superionic highway’ in two-phase materials based on coated SDC.  相似文献   

20.
In this paper, we report on the formation of novel hexagonal NiTiO3 nanopowders synthesized by the impregnation or co-precipitation methods through the thermal decomposition reaction of the precursors. The decomposition course was followed using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) techniques. The intermediate decomposition products as well as the formed titanate were characterized using X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns of the precursors calcined at 1000 °C showed the formation of the single ilmenite-type rhombohedral structure only with the impregnated precursor, while with the precipitated NiTiO3 powders one it indicates the presence of some NiO and TiO2 impurities. Transmission electron microscopy (TEM) exhibited loosely agglomerated hexagonal particles with uniform morphology having a size around 61 nm. The Brunauer-Emmett-Teller (BET) surface area measurements showed a type III isotherm with calculated surface area of 152 m2/g. The plot of ln σac vs. temperature as a function of frequency indicates a semiconducting behavior with ferroelectric phase transition at 605 K. The calculated activation in the ferroelectric region is 0.93 eV suggests the predominance of hopping conduction mechanism. Kinetic analysis of TG data according to different integral methods showed that in the NiC2O4·2H2O–TiO2 precursor, the water molecules are coordinately bounded and the presence of TiO2 reduces the activation energy needed to the oxalate decomposition reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号