首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology, thermal degradation, and flame retardancy of epoxy (EP) composites containing microcrystalline cellulose whisker (MCW) and microencapsulated ammonium polyphosphate (MFAPP) were investigated using optical microscopy, limiting oxygen index (LOI), UL-94, thermogravimetry (TG), microscale combustion calorimeter, and TG-FTIR. EP/MFAPP/MCW composites can pass V-0 in UL-94 test at 6 wt% loading, and its peak heat release rate decreases when compared with EP and EP/MFAPP. The reason is that the presence of MCW strengthens the charring capacity of EP composites in a fire. The results of TG and TG-FTIR show that at low temperature, MFAPP stimulates the dehydration of MCW and EP, and produces gas which is helpful for the formation of an intumescent char. Moreover, the residue at high temperature does not release any flammable gas and is a good insulation layer on the surface of the sample, which protects the underlying material in a fire.  相似文献   

2.
采用原位聚合法合成制备了以蜜胺树脂(MF)、环氧树脂(EP)以及EP和MF为囊材的微胶囊阻燃剂MFAPP、EPAPP、EMFAPP,用红外光谱(FT-IR)和扫描电镜(SEM)表征微胶囊阻燃剂的核壳结构。采用极限氧指数(LOI)和垂直燃烧等级测试(UL94)对MFAPP、EPAPP、EMFAPP在环氧树脂中的阻燃特性进行了研究。当添加量大于7%时,阻燃复合材料均能通过UL 94 V-0级测试,极限氧指数大于27.0%,表明MFAPP、EPAPP、EMFAPP均为EP的高效阻燃剂,这些阻燃剂在EP阻燃过程中均形成了膨胀炭层,属于膨胀阻燃机理。另外在耐水性实验中发现,添加EPAPP、EMFAPP的EP复合材料具有更好的耐水性,经75℃水浸泡6天后,阻燃性能得到了较好的保持。  相似文献   

3.
采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.  相似文献   

4.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

5.
A metal-doped organic and inorganic hybrid polyhedral oligomeric silsesquioxanes (POSS) with a titanium atom in the POSS cage and an ethanolamine substitute group in the corner, namely MEA-Ti-POSS, was synthesized through simple condensation reaction and substitute reaction. It was blended with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to form a kind of blending-type flame retardant system for the modification of epoxy resins. The thermal stability, flame retardancy and mechanical properties of cured epoxy resin composites were studied. Comparing with pure epoxy resin, the LOI value of EP/MEA-Ti-POSS/DOPO composites was raised from 25.2% to 32.7%, and the UL-94 grade reached V-0 level at a loading of the mixture of 5% MEA-Ti-POSS and 5% DOPO. In addition, the cone calorimetry results showed that the heat release rate, total heat release and total smoke production as well as smoke production rate were all reduced during the combustion of EP/MEA-Ti-POSS/DOPO composites. The residual char analysis revealed that carbon residues of EP/MEA-Ti-POSS/DOPO composite served as a physical protective layer to insulate the oxygen and combustible gases to reduce the ablation of the matrix. It was concluded that the mixture of MEA-Ti-POSS and DOPO not only effectively raised the thermal stability and flame retardancy of epoxy composited materials, but also improved their mechanical properties, which expanded a promising application of the metal-POSS derivatives as non-halogen additives in the flame retardant polymers.  相似文献   

6.
Nano-Mg(OH)2 (nanometre magnesium hydroxide, nano-MH) was successfully introduced into the esterification and polycondensation system by in situ polymerization to obtain PET/magnesium salt composites (PETMS). The thermal properties and flame retardancy of PETMS were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), UL-94 vertical burning and limited oxygen index (LOI) test. The DSC and TGA results show that magnesium salts in the PET matrix have little effect on the thermal properties of PET, but a significant effect on the thermal stabilities of the composites. The results of LOI and UL-94 test show PETMS have higher LOI values (≥25%) and V-0 rating without melt dripping in the UL-94 test, indicating that PETMS have good flame retardancy and anti-dripping property. Moreover, the residues of magnesium salts and composites after TGA test were also studied by Fourier transform infrared spectroscopy (FTIR) to better understand the mechanism of flame retardancy, which reveals that magnesium salts accelerate the degradation of PET and catalyze the formation of char. The SEM results show the morphological structures of the char effectively protect the composites’ internal structures and inhibit the heat, smoke transmission and reduce the fuel gases when the fire contacts them.  相似文献   

7.

Nanocarbon black (CB) was introduced into ethylene-vinyl acetate/brucite (EM) composites to investigate the synergistic effect of CB and metal hydroxide on improving the flame retardancy of EVA. Flammability properties of the as-prepared EVA composites were investigated by thermogravimetric analysis, limiting oxygen index (LOI), UL-94 test and cone calorimetry test. The results indicated that the optimum mass ratio of CB/brucite was 1/54, at which the EVA composites displayed dramatic improvement on thermal stability and flame retardancy. The LOI value was as high as 35.3%, the UL-94 passed the V-0 rating, and the peak heat release rate reduced 79% in comparison with pure EVA. Based on the morphology and structure analysis for residue chars, the flame-retardant mechanism was attributed mainly to the positive synergistic effect of CB and brucite on promoting the formation of better carbon protective layer during combustion.

  相似文献   

8.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

9.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

10.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

11.
《先进技术聚合物》2018,29(1):497-506
A novel phosphorus‐containing, nitrogen‐containing, and sulfur‐containing reactive flame retardant (BPD) was successfully synthesized by 1‐pot reaction. The intrinsic flame‐retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol‐A (DGEBA). Thermal stability, flame‐retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame‐retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA‐FTIR), pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD‐1.0 thermoset achieved LOI value of 39.1% and UL94 V‐0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av‐HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD‐1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD‐0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD‐0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus‐rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus‐containing free radicals and nitrogen/sulfur‐containing inert gases in gaseous phase. There was flame‐retardant synergism between phosphorus, nitrogen, and sulfur of BPD.  相似文献   

12.
Black phosphorus (BP) has been attractive for many research groups as its promising properties. However, the poor air stability of BP has limited its practical applications. To simultaneously address this problem and improve the flame retardancy of BP in epoxy resin (EP), a surface coordination strategy was proposed. Herein, a titanium ligand (denoted as TiL4) was designed to coordinate BP nanosheets, which can occupy the lone pair electrons of BP. The Ti–P coordination contributed to the improvement of ambient stability of BP. The serious degradation was observed from pure BP owing to the oxidation. Whereas, the surface coordination can impede the ambient degradation rate of BP by 74.07%. With the addition of 1.5 wt% TiL4@BP, the char yield of EP nanocomposites was increased by 20.55% due to the catalytic charring effect of TiL4@BP. The incorporation of 1.5 wt% TiL4@BP can reduce the peak of heat release rate and total heat release values of EP by 29.41% and 23.32%. The EP/TiL4@BP 1.5 also can pass the UL-94 V-0 rating, and its value of limiting oxygen index was enhanced by 13.60%. The improvement in the flame retardancy of BP in EP can be largely ascribed to synergistic catalytic charring effects between BP and TiL4. The condense and compact char layer can act as a physical barrier to restrict the exchange of pyrolytic products and the transfer of heat. In addition, the free radical quenching effect of BP nanosheets also accounted for the excellent flame retardant performance of EP. This work proposed a reference for synchronically obtaining the improvement for the air stability and flame retardant performance of BP.  相似文献   

13.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

14.
Novel intumescent flame-retardant poly(lactic acid) (PLA/IFR)/organo-modified α-zirconium phosphate(OZrP) nanocomposites were prepared via incorporation of charring agent (CA), ammonium polyphosphate (APP) and OZrP into PLA. OZrP was synthesized directly by a solvent thermal method. The morphological characterization of PLA/IFR/OZrP nanocomposites was conducted by wide angle X-ray diffraction (WXRD) and transmission electron microscopy (TEM). The effect of the OZrP on flame retardancy and the thermal stability of PLA/IFR composites were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test. The TGA data illustrated that the OZrP could increase the residue and significantly improve the flame retardancy of PLA/IFR/OZrP nanocomposites showing an excellent synergistic effect. The addition of OZrP to the flame-retardant PLA increases the LOI and enhances the UL-94 rating. Cone calorimeter tests gave clear evidence that the incorporation of OZrP into PLA/IFR composites resulted in the significant reduction of the heat release rate (HRR), low total heat release (THR) and high amount of char residues during combustion. The flame-retardant mechanism of PLA/IFR/OZrP nanocomposites may correspond to the intumescent flame-retardant mechanism and catalyzed carbonization mechanism caused by OZrP.  相似文献   

15.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

16.
Novel intumescent flame retardant polypropylene (PP) composites were prepared based on a char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP). The thermal and flame retardancy of flame retardant PP composites were investigated by limiting oxygen index, UL-94 test, cone calorimetry, thermogravimetric analysis, scanning electron micrograph, and water resistance test. The results of cone calorimetry show that the flame retardant properties of PP with 30 wt% novel intumescent flame retardants (CFA/Si-MCAPP = 1:3) improve greatly. The peak heat release rate and total heat release decrease, respectively, from 1,140.0 to 156.8 kW m?2 and from 96.0 to 29.5 MJ m?2. The PP composite with CFA/Si-MCAPP = 1:3 has the excellent water resistance, and it can still obtain a UL-94 V-0 rating after 168 h soaking in water.  相似文献   

17.
合成了一种9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物——聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP), 以间苯二胺(m-PDA)为固化剂, 环氧树脂(EP)为基料, POPP为阻燃剂, 复配聚磷酸铵(APP), 制备了不同磷含量的阻燃环氧树脂. 利用极限氧指数(LOI)和垂直燃烧(UL94)实验表征了环氧树脂的阻燃性能; 以热重分析、 锥型量热和扫描电镜分析了阻燃环氧树脂的热性能和表面形态. 研究结果表明, 阻燃剂总加入量(质量分数)为5%时即可达到UL94 V-0级, 同时LOI值为27.7%; 当总加入量为15%, 即wPOPP=5%, wAPP=10 %时, 其LOI值可达到33.8%. 随着磷含量的增加, 阻燃环氧树脂的初始降解温度略有降低, 但高温下的残炭率明显增加. POPP/APP的加入在很大程度上降低了环氧树脂的热释放速率、 有效燃烧热、 烟释放量和有毒气体释放量. 阻燃环氧树脂在高温下形成比较稳定的致密膨胀炭层, 为底层的环氧树脂主体隔绝了分解产物及热量和氧气交换, 增强了高温下的热稳定性.  相似文献   

18.
采用模压成型的方法制备了单宁酸/聚乙烯醇(TA-PVA)共混物,并研究了不同TA/PVA配比对TA-PVA共混物的阻燃性能的影响。通过锥形量热仪、热重分析仪(TGA)、差示扫描量热仪(DSC)、垂直燃烧(UL-94)测试仪和极限氧指数(LOI)测试仪等对制备的TA-PVA共混物的阻燃性能进行了测试。结果表明,TA的加入能提高PVA的阻燃性能。TA和PVA能够通过分子间氢键形成稳定的TA-PVA共混物。当TA-PVA共混物中TA含量增加,所制备得到的TA-PVA共混物的热稳定性增加,玻璃化转变温度提高。当n(TA)∶n(PVA)=1∶50时,TA-PVA共混物的LOI值达到31.6%,UL-94等级为V-1级,热释放速率峰值从634.9 kW/m2降至328.1 kW/m2,烟气产生速率从0.18 m2/s降至0.10 m2/s。  相似文献   

19.
The calcium alginate/CaCO3 composites were prepared via in situ method, and their flame retardancy and thermal degradation mechanism were investigated. The composites as-prepared were analyzed by the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis (TG), vertical burning (UL-94), cone calorimeter (CONE) and X-ray diffraction (XRD). The SEM demonstrated that the inorganic calcium salt in the composites had great influence on the morphology of materials. The TG results indicated the thermal stability of the composites was remarkably improved by 70 °C, compared with that of the calcium alginate. The combustion behaviors of the materials were assessed by CONE. In comparison with those of the calcium alginate, the peak heat release rate and total heat release of the composites decreased by 40.42 and 62.59%, respectively. The different degradation mechanisms of the calcium alginate and the composites were first proposed in detail based on the TG, XRD and SEM results. The composites exhibited excellent thermal stability and flame retardancy, which is promising to be developed for the application as flame-retardant materials in the future.  相似文献   

20.
A novel functionalized α-zirconium phosphate (F-ZrP) modified with intumescent flame retardant was synthesized by co-precipitation method and characterized. Poly (lactic acid) (PLA)/F-ZrP nanocomposites were prepared by melt blending method. The thermal stability and combustion behavior of PLA/F-ZrP nanocomposites were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). The results showed that the addition of flame retardant F-ZrP slightly affect PLA's thermal stability, but significantly improve the flame retardancy of PLA composites. In comparison with neat PLA, the LOI value of PLA/F-ZrP was increased from 19.0 to 26.5, and the UL-94 rating was enhanced to V-0 as the loading of F-ZrP at 10%. SEM results suggested the introduction of F-ZrP in the PLA system can form compact intumescent char layer during burning. All these results showed that the F-ZrP performed good flame retardancy for PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号