首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large claims in an actuarial risk process are of special importance for the actuarial decision making about several issues like pricing of risks, determination of retention treaties and capital requirements for solvency. This paper presents a model about claim occurrences in an insurance portfolio that exceed the largest claim of another portfolio providing the same sort of insurance coverages. Two cases are taken into consideration: independent and identically distributed claims and exchangeable dependent claims in each of the portfolios. Copulas are used to model the dependence situations. Several theorems and examples are presented for the distributional properties and expected values of the critical quantities under concern.  相似文献   

2.
In nonlife insurance, frequency and severity are two essential building blocks in the actuarial modeling of insurance claims. In this paper, we propose a dependent modeling framework to jointly examine the two components in a longitudinal context where the quantity of interest is the predictive distribution. The proposed model accommodates the temporal correlation in both the frequency and the severity, as well as the association between the frequency and severity using a novel copula regression. The resulting predictive claims distribution allows to incorporate the claim history on both the frequency and severity into ratemaking and other prediction applications. In this application, we examine the insurance claim frequencies and severities for specific peril types from a government property insurance portfolio, namely lightning and vehicle claims, which tend to be frequent in terms of their count. We discover that the frequencies and severities of these frequent peril types tend to have a high serial correlation over time. Using dependence modeling in a longitudinal setting, we demonstrate how the prediction of these frequent claims can be improved.  相似文献   

3.
It is no longer uncommon these days to find the need in actuarial practice to model claim counts from multiple types of coverage, such as the ratemaking process for bundled insurance contracts. Since different types of claims are conceivably correlated with each other, the multivariate count regression models that emphasize the dependency among claim types are more helpful for inference and prediction purposes. Motivated by the characteristics of an insurance dataset, we investigate alternative approaches to constructing multivariate count models based on the negative binomial distribution. A classical approach to induce correlation is to employ common shock variables. However, this formulation relies on the NB-I distribution which is restrictive for dispersion modeling. To address these issues, we consider two different methods of modeling multivariate claim counts using copulas. The first one works with the discrete count data directly using a mixture of max-id copulas that allows for flexible pair-wise association as well as tail and global dependence. The second one employs elliptical copulas to join continuitized data while preserving the dependence structure of the original counts. The empirical analysis examines a portfolio of auto insurance policies from a Singapore insurer where claim frequency of three types of claims (third party property damage, own damage, and third party bodily injury) are considered. The results demonstrate the superiority of the copula-based approaches over the common shock model. Finally, we implemented the various models in loss predictive applications.  相似文献   

4.
This paper considers statistical modeling of the types of claim in a portfolio of insurance policies. For some classes of insurance contracts, in a particular period, it is possible to have a record of whether or not there is a claim on the policy, the types of claims made on the policy, and the amount of claims arising from each of the types. A typical example is automobile insurance where in the event of a claim, we are able to observe the amounts that arise from say injury to oneself, damage to one’s own property, damage to a third party’s property, and injury to a third party. Modeling the frequency and the severity components of the claims can be handled using traditional actuarial procedures. However, modeling the claim-type component is less known and in this paper, we recommend analyzing the distribution of these claim-types using multivariate probit models, which can be viewed as latent variable threshold models for the analysis of multivariate binary data. A recent article by Valdez and Frees [Valdez, E.A., Frees, E.W., Longitudinal modeling of Singapore motor insurance. University of New South Wales and the University of Wisconsin-Madison. Working Paper. Dated 28 December 2005, available from: http://wwwdocs.fce.unsw.edu.au/actuarial/research/papers/2006/Valdez-Frees-2005.pdf] considered this decomposition to extend the traditional model by including the conditional claim-type component, and proposed the multinomial logit model to empirically estimate this component. However, it is well known in the literature that this type of model assumes independence across the different outcomes. We investigate the appropriateness of fitting a multivariate probit model to the conditional claim-type component in which the outcomes may in fact be correlated, with possible inclusion of important covariates. Our estimation results show that when the outcomes are correlated, the multinomial logit model produces substantially different predictions relative to the true predictions; and second, through a simulation analysis, we find that even in ideal conditions under which the outcomes are independent, multinomial logit is still a poor approximation to the true underlying outcome probabilities relative to the multivariate probit model. The results of this paper serve to highlight the trade-off between tractability and flexibility when choosing the appropriate model.  相似文献   

5.
In actuarial science, collective risk models, in which the aggregate claim amount of a portfolio is defined in terms of random sums, play a crucial role. In these models, it is common to assume that the number of claims and their amounts are independent, even if this might not always be the case. We consider collective risk models with different dependence structures. Due to the importance of such risk models in an actuarial setting, we first investigate a collective risk model with dependence involving the family of multivariate mixed Erlang distributions. Other models based on mixtures involving bivariate and multivariate copulas in a more general setting are then presented. These different structures allow to link the number of claims to each claim amount, and to quantify the aggregate claim loss. Then, we use Archimedean and hierarchical Archimedean copulas in collective risk models, to model the dependence between the claim number random variable and the claim amount random variables involved in the random sum. Such dependence structures allow us to derive a computational methodology for the assessment of the aggregate claim amount. While being very flexible, this methodology is easy to implement, and can easily fit more complicated hierarchical structures.  相似文献   

6.
Before applying actuarial techniques to determine different subportfolios and adjusted insurance premiums for contracts that belong to a more or less heterogeneous portfolio, e.g. using credibility theory, it is worthwhile performing a statistical analysis on the relevant factors influencing the risk in the portfolio. Also the distributional behaviour of the portfolio should be examined. In this paper such a programme is presented for car insurance data using logistic regression, correspondence analysis, and statistical techniques from survival analysis. The specific mechanisms governing large claims in such portfolios will also be described. This work is based on a representative sample from Belgian car insurance data from 1989.  相似文献   

7.
This paper is concerned with the distribution of runs associated with claim indicators in a compound binomial risk model. We study the total number of claims, the longest run without claim, the shortest run without claim and the total number of runs up to a fixed period before the occurrence of a ruin. These quantities are potentially useful for an investment strategy of an insurance company and for understanding the behavior of a specific portfolio over time. We obtain recursive equations for the exact distributions of these random variables. We also illustrate the theoretical results with numerical computations.  相似文献   

8.
The estimation of loss reserves for incurred but not reported (IBNR) claims presents an important task for insurance companies to predict their liabilities. Conventional methods, such as ladder or separation methods based on aggregated or grouped claims of the so-called “run-off triangle”, have been illustrated to have some drawbacks. Recently, individual claim loss models have attracted a great deal of interest in actuarial literature, which can overcome the shortcomings of aggregated claim loss models. In this paper, we propose an alternative individual claim loss model, which has a semiparametric structure and can be used to fit flexibly the claim loss reserving. Local likelihood is employed to estimate the parametric and nonparametric components of the model, and their asymptotic properties are discussed. Then the prediction of the IBNR claim loss reserving is investigated. A simulation study is carried out to evaluate the performance of the proposed methods.  相似文献   

9.
Accurate loss reserves are an important item in the financial statement of an insurance company and are mostly evaluated by macrolevel models with aggregate data in run‐off triangles. In recent years, a new set of literature has considered individual claims data and proposed parametric reserving models based on claim history profiles. In this paper, we present a nonparametric and flexible approach for estimating outstanding liabilities using all the covariates associated to the policy, its policyholder, and all the information received by the insurance company on the individual claims since its reporting date. We develop a machine learning–based method and explain how to build specific subsets of data for the machine learning algorithms to be trained and assessed on. The choice for a nonparametric model leads to new issues since the target variables (claim occurrence and claim severity) are right‐censored most of the time. The performance of our approach is evaluated by comparing the predictive values of the reserve estimates with their true values on simulated data. We compare our individual approach with the most used aggregate data method, namely, chain ladder, with respect to the bias and the variance of the estimates. We also provide a short real case study based on a Dutch loan insurance portfolio.  相似文献   

10.
The generalized Poisson distribution is well known to be a compound Poisson distribution with Borel summands. As a generalization we present closed formulas for compound Bartlett and Delaporte distributions with Borel summands and a recursive structure for certain compound shifted Delaporte mixtures with Borel summands. Our models are introduced in an actuarial context as claim number distributions and are derived only with probabilistic arguments and elementary combinatorial identities. In the actuarial context related compound distributions are of importance as models for the total size of insurance claims for which we present simple recursion formulas of Panjer type.  相似文献   

11.
The ownership of life insurance may be modeled as a portfolio problem in which the return on the life insurance contract is negatively correlated with the return on a claim to future wage income. The mean-variance model developed in the paper uses such a framework to express the optimal amount of insurance in terms of two components: the expected value of the wage claim and the risk/return characteristics of the insurance contract. The model thus offers an appealing way to formulate the life insurance problem in a portfolio context. Implications of the model for the functioning of a life insurance market are examined and the existence of accidental death contracts is explained.  相似文献   

12.
A problem of current concern in the assessment of claims experience in non-life insurance is addressed. The problem relates to the interface of two well-defined areas of actuarial activity, namely reserving and rating. A model is proposed that permits the analysis of claim settlement experience in such a way as to allow for variations in settlement rate, proportions of nil claims and variations from year to year in a risk-factorial background. From this, the reserving approach may be developed coherently into the area of risk costing for rating purposes.  相似文献   

13.
EU Gender Directive ruled out discrimination against gender in charging premium for insurance products. This prohibition prevents the use of the standard actuarial fairness principle to price life insurance products. According to current actuarial practice, unisex premiums are calculated with a simple weighting rule of the gender-specific life tables. This procedure is likely to violate portfolio fairness principles. Up to our knowledge, in the actuarial literature there is no unisex mortality model that respects the unisex fairness principle. This paper is the first attempt to fill this gap. First, we recall the notion of unisex fairness principle and the corresponding unisex fair premium. Then, we provide a unisex stochastic mortality model for the mortality intensity that is underlying the pricing of a life portfolio of females and males belonging to the same cohort. Finally, we calibrate the unisex mortality model using the unisex fairness principle. We find that the weighting coefficient between the males’ and females’ own mortalities depends mainly on the quote of portfolio relative to each gender, on the age, and on the type of insurance products. The knowledge of a proper unisex mortality model could help life insurance companies to better understanding the nature of the risk of a mixed portfolio.  相似文献   

14.
Given the high competitiveness in the vehicle insurance market, the need arises for an adequate pricing policy. To this end, insurance companies must select risks in a way that allows the expected claims ratio to come as close as possible to the real claims ratio. The use of new analytical tools which provide more information is of great interest. In this paper it is shown how functional principal component analysis can be useful in actuarial science. An empirical study is carried out with data from a Spanish insurance company to estimate the risk of occurrence of a claim in terms of the driver’s age, whilst taking into account other relevant variables.  相似文献   

15.
The estimation of loss reserves for incurred but not reported (IBNR) claims presents an important task for insurance companies to predict their liabilities. Recently, individual claim loss models have attracted a great deal of interest in the actuarial literature, which overcome some shortcomings of aggregated claim loss models. The dependence of the event times with the delays is a crucial issue for estimating the claim loss reserving. In this article, we propose to use semi-competing risks copula and semi-survival copula models to fit the dependence structure of the event times with delays in the individual claim loss model. A nonstandard two-step procedure is applied to our setting in which the associate parameter and one margin are estimated based on an ad hoc estimator of the other margin. The asymptotic properties of the estimators are established as well. A simulation study is carried out to evaluate the performance of the proposed methods.  相似文献   

16.
This paper investigates bivariate recursive equations on excess-of-loss reinsurance. For an insurance portfolio, under the assumptions that the individual claim severity distribution has bounded continuous density and the number of claims belongs to R1 (a, b) family, bivariate recursive equations for the joint distribution of the cedent's aggregate claims and the reinsurer's aggregate claims are obtained.  相似文献   

17.
变异系数的区间估计   总被引:2,自引:0,他引:2  
在机动车辆索赔次数模型的研究中,考虑分布的离散程度是必要的,它有助于选择正确的统计模型。对于给定的样本容量为T的一个样本Ni,i=1,…,T,本文用非参数方法给出了KarlPear son变异系数的区间估计。最后将估计方法应用于我国保险公司的一组实际数据,得到令人满意的结论。  相似文献   

18.
In this paper, we extend to a multivariate setting the bivariate model A introduced by Jin and Ren in 2014 (Recursions and fast Fourier transforms for a new bivariate aggregate claims model, Scandinavian Actuarial Journal 8) to model insurance aggregate claims in the case when different types of claims simultaneously affect an insurance portfolio. We obtain an exact recursive formula for the probability function of the multivariate compound distribution corresponding to this model under the assumption that the conditional multivariate counting distribution (conditioned by the total number of claims) is multinomial. Our formula extends the corresponding one from Jin and Ren.  相似文献   

19.
Generalized linear models are common instruments for the pricing of non-life insurance contracts. They are used to estimate the expected frequency and severity of insurance claims. However, these models do not work adequately for extreme claim sizes. To accommodate for these extreme claim sizes, we develop the threshold severity model, that splits the claim size distribution in areas below and above a given threshold. More specifically, the extreme insurance claims above the threshold are modeled in the sense of the peaks-over-threshold methodology from extreme value theory using the generalized Pareto distribution for the excess distribution, and the claims below the threshold are captured by a generalized linear model based on the truncated gamma distribution. Subsequently, we develop the corresponding concrete log-likelihood functions above and below the threshold. Moreover, in the presence of simulated extreme claim sizes following a log-normal as well as Burr Type XII distribution, we demonstrate the superiority of the threshold severity model compared to the commonly used generalized linear model based on the gamma distribution.  相似文献   

20.
Suppose that, over a fixed time interval of interest, an insurance portfolio generates a random number of independent and identically distributed claims. Under the LCR treaty the reinsurance covers the first l largest claims, while under the ECOMOR treaty it covers the first l−1 largest claims in excess of the lth largest one. Assuming that the claim sizes follow an exponential distribution or a distribution with a convolution-equivalent tail, we derive some precise asymptotic estimates for the tail probabilities of the reinsured amounts under both treaties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号