首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

2.
Products derived from bamboo EMAL pyrolysis were investigated by means of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and the effects of temperature and catalyst (sodium chloride, permutite) on the yields of pyrolysis products were probed in detail. The results showed that thermal degradation of EMAL mainly occurred at the temperature range from 250 °C to 600 °C, and both the temperature and catalyst in EMAL pyrolysis were important factors in the formation or inhibition of products. The products that derived from p-hydroxyphenylpropanoid, guaiacylpropanoid, and syringylpropanoid of lignin units by pyrolytic reactions were classified as the heterocycle (2,3-dihydrobenzofuran), phenols, a small quantity of acetic acid and furans, etc. With an increase of pyrolysis temperature, the amount fraction of 2,3-dihydrobenzofuran (DHBF) decreased from 66.26% to 19.15%. Moreover, when the additive catalyst increased from 5% to 20%, permutite catalyst improved in the formation of DHBF from19.15% to 24.19%, whereas NaCl catalyst was effective to inhibit the production of DHBF from 19.15% to 13.08%. Permutite promoted the production of coke from EMAL pyrolysis, conversely, NaCl had an inhibiting effect on the generation of coke. And NaCl catalyst had a significant catalytic effect on raising or reducing of the product yields in bamboo lignin pyrolysis.  相似文献   

3.
A new offline-pyrolysis rig has been designed to allow multifunctional experiments for preparative and analytical purposes. The system conditions can be set and monitored, e.g. temperature, its gradients and heat flux. Some special features include (1) high heating rates up to 120 °C/s with pyrolysis temperatures up to 850 °C at variable pyrolysis times and (2) the selection of different atmospheres during pyrolysis. A complete mass balance of products and reactants (gas, liquids and solids) by gravimetric methods and sequential chromatographic analyses was obtained.The pyrolytic behaviour and the decomposition products of lignin-related compounds were studied under different conditions: heating rates (from 2.6 °C/s up to 120 °C/s), pyrolysis temperatures at 500 °C and 800 °C in different atmospheres (N2, H2, and mixtures of N2 and acetylene). Kraft lignin, soda lignin, organosolv lignin, pyrolytic lignin from pine bio-oil, residues from biomass hydrolysis and fermentation were studied.The obtained pyrolysis products were classified into three general groups: coke, liquid phase and gas phase (volatile organic compounds (VOC) and permanent gases). The liquid fraction was analysed by GC–MS/FID. In addition, comprehensive two-dimensional GC was applied to further characterise the liquid fraction. VOCs were semi-quantified by a modified headspace technique using GC–MS/FID analysis. The micro-pyrolysis rig proved to be an efficient and useful device for complex pyrolysis applications.  相似文献   

4.
The pyrolysis behaviors of corn stalk and its three real components (i.e. hemicellulose, cellulose, and lignin) have been investigated with the techniques of TG-MS and Py-GC/MS. The thermal behavior and the evolution profiles of major volatile fragments from each sample pyrolysis have been discussed in depth, while paying close attention to the impact and contributions of each component on the raw material pyrolysis. It was found that pyrolysis of the corn stalk was a comprehensive reflection of its three main components both on thermogravimetric characteristics and on products distribution and their formation profiles. Hemicellulose definitely made the greatest contribution to the formation of acids and ketones at around 300 °C. Cellulose was more dedicated to the products of furans and small molecule aldehydes in a short temperature range 320–410 °C. While lignin mainly contributed to produce phenols and heterocyclic compounds over a wider temperature range 240–550 °C. The experimental results obtained in the present work are of interest for further studies on selective fast pyrolysis of biomass into energy and chemicals.  相似文献   

5.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

6.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

7.
Batch-mode pyrolysis of 200.0 g samples of polymers was studied at low temperature. The cracking reaction was carried out in a stainless-steel autoclave with reaction temperatures of 360, 380, 400 and 420 °C, initial pressure of 6.325 kPa (absolute pressure) and reaction times of 0–240 min. Based on the experimental results, a four-lump kinetic model has been developed to describe the production distribution of the light fractions, middle distillates and heavy fraction. This model reasonably fitted the results in each reaction of operation conditions. It was also found that the pyrolysis kinetics of separated plastic, mixed plastic and mixed plastic containing additives can be described by the same kinetic model. The plastic additives have not had a great influence on the product distribution and kinetics of the mixed plastic pyrolysis. Finally, the optimum conditions of low-temperature conversion of plastic mixtures to value-added products were established. The formation of heavy fractions from HDPE was as high as 70 wt% at 380 °C at a reaction time of 250 min. During the thermal degradation of plastic mixtures, the heavy fractions yielded up 50 wt% for 30 min reaction time at 400 °C. The total activation energies for the conversion of HDPE and the plastic mixtures were estimated to be 217.66 kJ mol−1 and 178.49 kJ mol−1, respectively.  相似文献   

8.
In this paper, the via slow pyrolysis behavior of the bagasse and sawdust were studied at the different heating rates, the different iron-containing blend pyrolysis and the treatment temperature, the further understood for the pyrolysis of agricultural residues. The distribution of the products yield of the slow pyrolysis process, it is typically performed at temperature between 200 and 600 °C, the pyrolysis temperature increased, the bio-liquids and gas yields tended to increase, which at 400 °C was able to achieve maximum bio-liquids yields, the biochar yields tended to downward. For different heating rate, in the heating rate ranges for 80–100 W, the bio-liquids products yield curve increased from 44.5 wt% to 46.5 wt% for bagasse; the sawdust products yield increased from 41 wt% to 42.75 wt%. Iron-catalysts blend pyrolysis (0, 10, 25, 40 and 50 wt%), the bagasse bio-liquid yields respectively 56.25 wt% in the presence 50% iron-catalysts blend pyrolysis; the sawdust bio-liquid yields respectively 52.5 wt% in the presence 40% iron-catalysts blend. The pyrolysis process were calculated according to the kinetic mechanism were examined, the pyrolysis activation energy was between 6.55 and 7.49 kcal/mol for bagasse. Sawdust the pyrolysis activation energy was between 11.52 and 11.76 kcal/mol. Therefore, in this study a pyrolysis model of bagasse and sawdust thermal treatment may provide both agricultural and forestry transformation importance of resources.  相似文献   

9.
This article reports experimental results on fast pyrolysis of agricultural residues from cassava plantations, namely cassava rhizome (CR) and cassava stalk (CS), in a fluidised-bed fast pyrolysis reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of reaction temperatures, biomass particle size and the use of simple hot vapour filtration on pyrolysis product yields and properties. Results showed that the optimum pyrolysis temperatures for CR and CS were 475 °C and 469 °C, which gave maximum bio-oil yields of 69.1 wt% and 61.4 wt% on dry biomass basis, respectively. The optimum particle size for bio-oil production in this study was 250–425 μm. The use of the hot filter led to a reduction of 6–7 wt% of bio-oil yield. Nevertheless, the filtered bio-oils appeared to have a better quality in terms of initial viscosity, solids content, ash content and stability.  相似文献   

10.
This paper describes the conventional and microwave-assisted pyrolysis of coffee hulls at 500, 800 and 1000 °C. The influence of the pyrolysis method and temperature on the product yields and on the characteristics of the pyrolysis products is discussed. It was found that the pyrolysis of this particular residue gives rise to a larger yield of the gas fraction compared to the other fractions, even at relatively low temperatures. A comparison of microwave-assisted pyrolysis and conventional pyrolysis showed that microwave treatment produces more gas and less oil than conventional pyrolysis. In addition, the gas from the microwave has much higher H2 and syngas (H2 + CO) contents (up to 40 and 72 vol.%, respectively) than those obtained by conventional pyrolysis (up to 30 and 53 vol.%, respectively), in an electric furnace, at similar temperatures. From the pyrolysis fraction yields and their higher heating values it was found that the energy distribution in the pyrolysis products decreases as follows: gas > solid > oil. Moreover, the energy accumulated in the gas increases with the pyrolysis temperature. By contrast, the energy accumulated in the char decreases with the temperature. This effect is enhanced when microwave pyrolysis is used.  相似文献   

11.
In this work, the decomposition behaviors of jatropha wastes (husk, seed shell and branch) have been examined in order to get desired liquid organic compounds, but not undesired inorganic compounds such as CO, CO2, water and coke. The jatropha wastes exhibit a stepwise degradation pathway which has a slight difference in between samples before and after milling. In the preliminary pyrolysis using quartz reactor and H-ZSM-5(30) catalyst, the liquid products selectivity was seed shell > blanch > husk > seed shell (no catalyst). In the absence of catalyst, the Py-GC/MS analyses for pyrolysis of jatropha wastes show a range of aromatic hydrocarbons, phenols, alcohols and ketones, acids and esters, ethers and aldehydes. Aromatics are predominantly formed above 90% of area percentage by use of catalyst. Of aromatic compounds, xylenes, naphthalenes and toluene are mainly produced. The product selectivity is dependent on both the size of the catalyst pores and the nature of the active sites and one candidate is H-ZSM-5 and the other candidate is β-zeolite. The reaction pathway involves dehydrogenation and dehydroaromatization of aliphatic oxygenates such as alkylcyclohexanol and higher carboxylic acids to form phenol derivatives, which undergo hydrodeoxygenation into toluene and xylenes, followed by dehydroaromatization to give naphthalenes.  相似文献   

12.
This work analyzes and discusses the general features of biomass pyrolysis, both on the basis of a new set of experiments and by using a detailed kinetic model of biomass devolatilization that includes also successive gas phase reactions of the released species and is therefore able to predict the main gases composition. Experiments are performed in a lab-scale Entrained Flow Reactor (EFR) to investigate biomass pyrolysis under high temperatures (1073–1273 K) and high heating fluxes (10–100 kW m−2). The influence of particle dimensions and temperature has been tested versus solid residence time in the reactor. The particle size appeared as the most crucial parameter. The pyrolysis of 0.4 mm particles is nearly finished under this range of temperatures after a reactor length of 0.3 m, with more than 75 wt% of gas release, whereas the conversion is still under evolution until the end of the reactor for larger particles up to 1.1 mm, due to internal heat transfer limitations. The preliminary comparisons between the model and the experimental data are encouraging and show the ability of this model to contribute to a better design and understanding of biomass pyrolysis process under severe conditions of temperature and heating fluxes typically found in industrial gasifiers.  相似文献   

13.
We produce uniform mesoporous single- and multilayers on 4 in. p-type Ge wafers by means of electrochemical etching in highly concentrated HF-based electrolytes. Pore formation by anodic etching in germanium leads to a constant dissolution of the already formed porous layer plus substrate. Alternating the etching bias from anodic to cathodic bias enhances the passivation of the pore walls and substrate. The formation of porous multilayers is possible, since the starting layer is not dissolved during the formation of the separation layer. We report on the production of mesoporous double layers in Ge with different porosities. The change in the porosity of the porous layers is achieved by varying the anodic etching current and the HF concentration of the electrolyte. Porosities in the range of 25–65% are obtained for etching current densities of 1–15 mA cm?2 with the specific resistivity of the Ge substrates lying in the (0.020–0.032) Ω cm range and electrolyte HF concentrations in the range of 35–50 wt.%.  相似文献   

14.
The choice of a solid reducer for hybrid propulsion is generally based on the quantity of gaseous combustible it can produce (expressed indirectly by the regression rate). For this reason, the studies focus on the use of additives or on the design of grain while the kinetic aspect is rarely of interest despite the chemistry drives the phenomena (chemical induction delay, heat absorption, and chemical composition). One-step mechanisms are first considered in this paper to quantify the effect of operating conditions on high density polyethylene (HDPE), polymethylmethacrylate (PMMA) and hydroxyl termination polybutadiene (HTPB). Then the chemical composition of pyrolysis products is determined for a large range of operating conditions with highly detailed mechanism for HDPE (1014 species and 7541 reactions). The heating rate applied to the reducer is investigated (from 1 K s−1 to 107 K s−1). Ethylene is found to be the major pyrolysis product. The timescale found over 1250 K and 11.11 bar is in agreement with the requirements of hybrid propulsion. The calculated data are compared to experimental ones. Finally, a short combustion study with detailed chemistry (over 700 species and 3000 reactions) is proposed because it impacts directly on the pyrolysis through the generated heat flux. It allows considering the oxidiser decomposition (hydrogen peroxide (H2O2) and nitrous oxide (N2O)). Pure oxygen (O2) is considered as reference data. The effect of atmosphere (inert or oxidative) on the pyrolysis is shown. The kinetic computations of N2O combustion give higher flame temperatures than for H2O2. Ignition times, below a few milliseconds, are obtained for all the reducers over 1250 K. Finally, the HDPE/H2O2 and HTPB/N2O couples are found to be the most interesting.  相似文献   

15.
Pyrolysis of corncob with and without catalyst was investigated using thermogravimetry analyzer coupled with Fourier transform infrared spectroscopy (TGA–FTIR). The effects of two completely different catalysts, acid catalyst (MCM-41) and base catalyst (CaO), on the formation characteristics and composition of pyrolysis vapor were studied. The results show that these two catalysts give different product distributions. For catalytic run with MCM-41, the molality of carbonyl compounds decreases 10.2%, while that of phenols, hydrocarbons and CH4 increases 15.32%, 4.29% and 10.16% compared with non-catalytic run, respectively. The increase of phenols exhibits in a wide temperature range from about 295 °C to 790 °C in the catalytic run with MCM-41 catalyst. However, the use of CaO in pyrolysis of corncob leads to a huge change of product distribution. The molality of acids decreases 75.88%, while the molality of hydrocarbons and CH4 increases 19.83% and 51.05% compared with non-catalytic run, respectively. CaO is very effective in deacidification and the conversion of acids promotes the formation of hydrocarbons and CH4. Catalytic pyrolysis of corncob with CaO shows two main weight-loss stages. The first stage is from 235 °C to 310 °C with a weight loss of 31%. The second stage is from 650 °C to 800 °C with a weight loss of 21%.  相似文献   

16.
The potential of vacuum pyrolysis to convert sugar cane bagasse into char materials for wastewater treatment and soil amendment is the focus of this research paper. Vacuum pyrolysis produces both bio-oil and char in similar quantities. Vacuum pyrolysis has the potential to produce high quality chars for wastewater treatment and soil amendment directly during the conversion process, with no further upgrading required. In the present study, chars with the required porous structure was obtained directly from the vacuum pyrolysis process, making it very efficient as adsorbent both in terms of methylene blue (MB) adsorption with a N2-BET surface area of 418 m2 g−1. Further steam activation of the chars benefited the development of meso- and macroporosity, although this upgrading step was not essential to achieve the required performance of char as an MB adsorbent. The development of large pores during the vacuum pyrolysis favored physisorption of MB, rather than chemisorption. The chemical nature of the vacuum pyrolysis char resulted in a slightly acidic surface (pH 6.56). The biochar from vacuum pyrolysis can be considered as a highly beneficial soil amendment, as it would enhance soil nutrient and water holding capacity, due to its high cation exchange capacity (122 cmolc kg−1) and high surface area. It is also a good source of beneficial plant macro- and micronutrients and contains negligible levels of toxic elements.  相似文献   

17.
Carbon dioxide solubility {(vapor + liquid) equilibria: VLE} in ionic liquid, 1-butyl-3-methylimidazolium acetate ([bmim][Ac]), has been measured with a gravimetric microbalance at four isotherms about (283, 298, 323, and 348) K up to about 2 MPa. (Vapor + liquid + liquid) equilibria (VLLE: or liquid–liquid separations) have also been investigated with a volumetric method used in our previous works, since the present analysis of the VLE data using our equation-of-state model has predicted the VLLE at CO2-rich side solutions. The prediction for the VLLE has been confirmed experimentally. CO2 solubilities at the ionic liquid-rich side show extremely unusual behaviors; CO2 dissolves in the ionic liquid to a great degree, but there is hardly any vapor pressure above these mixtures up to about 20 mol% of CO2. It indicates that CO2 may have formed a non-volatile or very low vapor pressure molecular complex with the ionic liquid. The thermodynamic excess properties (enthalpy, entropy, and Gibbs free energy) of the present system do support such a complex formation. We have conducted several other experiments to investigate the complex formation (or chemical reactions), and conclude that a minor chemical reaction occurs but the complex formation is reversible without much degradation of the ionic liquid.  相似文献   

18.
Zijuan tea theabrownins (ZTTBs) was extracted from a type of fermented Zijuan tea and separated into fractions according to molecular weight. The extract was found to contain predominantly two fractions: <3.5 kDa and >100 kDa. These two fractions were analyzed for chemical composition, structural characteristics by Curie-point pyrolysis–gas chromatography–mass spectroscopy (CP-Py–GC/MS). The affects of pyrolysis temperature on pyrolytic products were also investigated. The fraction >100 kDa produced 50 GC/MS peaks during pyrolysis at 280 °C, 70 peaks at 386 °C, and 134 peaks at 485 °C. Fourteen of the products formed at 280 °C, 12 of those formed at 386 °C, and 21 of those formed at 485 °C were identified with match qualities of greater than 80%. The fraction <3.5 kDa gave 51 peaks during pyrolysis at 280 °C, 99 peaks at 386 °C, and 257 peaks at 485 °C. Six products formed at 280 °C, four products formed at 386 °C, and 61 products formed at 485 °C were identified with match qualities of greater than 80%. Pyrolysis temperatures of 485 °C and 386 °C were found suitable for the two fractions respectively. CP-Py–GC/MS revealed that, the fraction >100 kDa mainly consisted of phenolic pigments, esters, proteins, and polysaccharides, while the fraction <3.5 kDa contained no polysaccharide. CP-Py–GC/MS is an effective tool for the composition difference and structural characteristics of ZTTBs as well as other complex macromolecular plant pigments.  相似文献   

19.
The effects of impregnated Cr3+ on sulfur removal during pyrolysis and hydropyrolysis of coal were investigated by loading CrCl3 into raw, demineralized and pyrite removed coal, respectively. The results indicate that Cr has no effect on the removal of pyrite. Cr affects the removal of total sulfur by forming Cr7S8 and affecting the removal of organic sulfur. Cr acts as the sulfur removing agent by promoting the decomposition of the unstable organic sulfur at low temperature. However, it behaves to be sulfur fixing agent between 400 and 700 °C so as to inhibit the evolution of H2S, even in hydropyrolysis. With the increase of temperature from 700 to 1050 °C, a certain ratio of Cr7S8 is converted into organic sulfur during pyrolysis; however, almost all the Cr7S8 is reduced into Cr at 1050 °C during hydropyrolysis. And Cr significantly promotes the removal of organic sulfur at high temperature within reducing atmosphere. The XPS results indicate that the sulfur is enriched on coke surface by Cr, which is attributable to the formation of Cr7S8 as well as the transfer of organic sulfur from bulk to surface during pyrolysis and hydropyrolysis.  相似文献   

20.
Formation of binary and ternary complexes of lead(II) ions with 1-(aminomethyl) cyclohexane acetic acid and some biologically important α-amino acids, such as glycine, l-alanine, l-valine, l-leucine, l-isoleucine, l-phenylalanine and l-proline was investigated using the potentiometric technique at 32 °C. The properties of mixed ligands were investigated and discussed. The acidity constants of the ligands and their stability constants were determined in 50% (v/v) DMSO-water medium under experimental conditions. The ternary complex formation was found to occur in a stepwise manner. The stability of ternary complexes was investigated and compared with that of the corresponding binary complex in terms of the parameters, Δ log K and log X. The concentration distribution of various species formed in the mixed ligand systems was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号