首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

2.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

3.
Both 7‐carboxyl­ato‐8‐hydroxy‐2‐methyl­quinolinium monohydrate, C11H9NO3·H2O, (I), and 7‐carboxy‐8‐hydroxy‐2‐methyl­quinolinium chloride monohydrate, C11H10NO3+·Cl·H2O, (II), crystallize in the centrosymmetric P space group. Both compounds display an intramolecular O—H⋯O hydrogen bond involving the hydroxy group; this hydrogen bond is stronger in (I) due to its zwitterionic character [O⋯O = 2.4449 (11) Å in (I) and 2.5881 (12) Å in (II)]. In both crystal structures, the HN+ group participates in the stabilization of the structure via intermolecular hydrogen bonds with water mol­ecules [N⋯O = 2.7450 (12) Å in (I) and 2.8025 (14) Å in (II)]. In compound (II), a hydrogen‐bond network connects the Cl anion to the carboxylic acid group [Cl⋯O = 2.9641 (11) Å] and to two water mol­ecules [Cl⋯O = 3.1485 (10) and 3.2744 (10) Å].  相似文献   

4.
The structures of the title compounds, C16H14N4, (I), and C15H14N4, (II), respectively, have been determined, and their molecular packing arrangements compared. Both are essentially flat mol­ecules, with respective dihedral angles between the quinoline and heterocyclic rings of 19.0 (1) and 8.5 (2)°. The pyridyl derivative, (I), packs in a P21/c unit cell, while in the pyrrolyl compound, (II), the mol­ecules pack in Pca21 and form a crinkled ribbon arrangement through the association of pyrrole NH groups with the quinoline N atoms.  相似文献   

5.
Title compounds bearing substituents on C(2), C(6) and C(8) were prepared from a newly synthesized pyrimidine derivative 11. The new pyrimidine 11 was generated from compound 2 through two different synthetic schemes. In one pathway, compound 2 was nitrosated, reduced and alkylated to produce com pounds 9 , 10 and 11 respectively (Scheme). In an alternate route using compound 2 as the starting material, a coupling reaction using the diazonium salt derived from p‐methylaniline afforded the azo derivative 7 , which was subsequently alkylated and reductively cleaved to form compounds 8 and 11 respectively (See Scheme). Compound 11 was annulated to the corresponding hypoxanthine derivatives 12–14 ; compounds 12 and 13 were chlorinated with phosphorus oxychloride, then reacted with amines to yield compound 17 and 20 respectively. Compounds 21 , 22 and 23 were obtained by oxidation of the corresponding sulfide as depicted in Scheme. Alkylation of the thiol function of 1 gave a mixture of 3 and 4. Compound 3 was chlo rinated to 5. Nitration of 5 resulted in electrophilic aromatic substitution of the aryl ring and concomitant oxidation of the sulfide to the sulfoxide, producing 6.  相似文献   

6.
7.
In the title compound, 4‐amino‐1‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐6‐methyl­sulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C11H16N5O3S, the conformation of the glycosidic bond is between anti and high anti. The 2′‐deoxy­ribofuranosyl moiety adopts the C3′‐exo–C4′‐endo conformation (3T4, S‐type sugar pucker), and the conformation at the exocyclic C—C bond is +sc (+gauche). The exocyclic 6‐amine group and the 2‐methyl­sulfanyl group lie on different sides of the heterocyclic ring system. The mol­ecules form a three‐dimensional hydrogen‐bonded network that is stabilized by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

8.
9.
10.
8‐Hydroxy‐2′‐deoxyguanosine (8‐OHdG) detection by high performance liquid chromatography (HPLC) with amperometric detection was studied using a Au electrode modified with different dendrimer based thin films. Gold electrode is thiol‐modified, forming self‐assembled monolayers on which different generation PAMAM dendrimers with terminal functional groups ? COOH and ? NH2 have been attached using peptidic bonds. Results obtained in synthetic samples show low limits of detection and quantification for 8‐OHdG (1.2×10?9 and 3.7×10?9 M respectively), with matrix interference elimination, thus avoiding sample pretreatment. Best results are obtained with electrodes modified with aliphatic amino thiols and 3.5 and 4.5 generation carboxylated dendrimers (Au/AET/DG3.5 and Au/AET/DG4.5), demonstrating that these materials constitute a good alternative for 8‐OHdG determination in biological fluids.  相似文献   

11.
Cs4K2CuSi2O8: Synthesis, Crystal Structure, UV‐Vis‐IR Data Cs4K2CuSi2O8 may be obtained via a redox reaction of KCuO2 in the presence of Cs2O and SiO2 with the container material (Cu) at 450 °C as blue single crystals which are sensitive to moisture. Powder samples were obtained by annealing intimate mixtures of the binary oxides under an inert gas atmosphere (Ar) in sealed Ag containers at 500 °C. The crystal structure contains isolated trimeric anions of [O2SiO2CuO2SiO2]6–. Cu2+ in square‐planar coordination share trans‐edges with [SiO4] tetrahedra. Spectroscopic investigations focus on the bonding situation of the [CuO4] unit (AOM) and characteristic vibrational modes of the silicate.  相似文献   

12.
Sensitive and reliable methods are required for the assessment of oxidative DNA damage, which can result from reactive oxygen species that are generated endogenously from cellular metabolism and inflammatory responses, or by exposure to exogenous agents. The development of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) selected reaction monitoring (SRM) method is described, that utilises online column‐switching valve technology for the simultaneous determination of two DNA adduct biomarkers of oxidative stress, 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) and 8‐oxo‐7,8‐dihydro‐2′‐deoxyadenosine (8‐oxodA). To allow for the accurate quantitation of both adducts the corresponding [15N5]‐labelled stable isotope internal standards were synthesised and added prior to enzymatic hydrolysis of the DNA samples to 2′‐deoxynucleosides. The method required between 10 and 40 µg of hydrolysed DNA on‐column for the analysis and the limit of detection for both 8‐oxodG and 8‐oxodA was 5 fmol. The analysis of calf thymus DNA treated in vitro with methylene blue (ranging from 5 to 200 µM) plus light showed a dose‐dependent increase in the levels of both 8‐oxodG and 8‐oxodA. The level of 8‐oxodG was on average 29.4‐fold higher than that of 8‐oxodA and an excellent linear correlation (r = 0.999) was observed between the two adducts. The influence of different DNA extraction procedures for 8‐oxodG and 8‐oxodA levels was assessed in DNA extracted from rat livers following dosing with carbon tetrachloride. The levels of 8‐oxodG and 8‐oxodA were on average 2.9 (p = 0.018) and 1.4 (p = 0.018) times higher, respectively, in DNA samples extracted using an anion‐exchange column procedure than in samples extracted using a chaotropic procedure, implying artefactual generation of the two adducts. In conclusion, the online column‐switching LC/MS/MS SRM method provides the advantages of increased sample throughput with reduced matrix effects and concomitant ionisation suppression, making the method ideally suited when used in conjunction with chaotropic DNA extraction for the determination of oxidative DNA damage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Title compounds were obtained starting from the key imidazole intermediate, 5‐amino‐1‐phenyl‐methyl‐2‐mercapto‐1H‐imidazole‐4‐carboxylic acid amide 5 , readily derived from the base catalyzed rearrangement of a thiazole, 5‐amino‐2‐phenylmethylaminothiazole‐4‐carboxylic acid amide 4 . Alkylation of the thiol function on 5 with phenylmethyl and allylic chlorides gave compounds 6 and 7 respectively. Cyclization of 6 with a variety of esters afforded 8‐phenylmethylthiohypoxanthines, 8–11 . Similarly, 7 was cyclized to 8‐allylthiohypoxanthines, 20–21 . Compound 5 was also cyclized, but formed 8‐mercaptohypox‐anthines, 22–24 . Alkylation of 8‐mercaptohypoxanthines afforded 8‐alkylthiohypoxanthines, 8, 9,25 and 26 (see Scheme 2). Chlorination of 9–11 afforded 16–18 ; adenine 19 was derived from 16 . Oxidation of hypox‐anthines 8–11 with m‐chloroperbenzoic acid gave the corresponding 8‐phenylmethylsulfonyl derivatives 12 ‐ 15 . These derivatives proved resistant to nucleophilic displacement reactions with primary amines.  相似文献   

14.
15.
The title compound, C10H12FN5O4·H2O, shows an anti glycosyl orientation [χ = −123.1 (2)°]. The 2‐deoxy‐2‐fluoroarabinofuranosyl moiety exhibits a major C2′‐endo sugar puckering (S‐type, C2′‐endo–C1′‐exo, 2T1), with P = 156.9 (2)° and τm = 36.8 (1)°, while in solution a predominantly N conformation of the sugar moiety is observed. The conformation around the exocyclic C4′—C5′ bond is −sc (trans, gauche), with γ = −78.3 (2)°. Both nucleoside and solvent molecules participate in the formation of a three‐dimensional hydrogen‐bonding pattern via intermolecular N—H...O and O—H...O hydrogen bonds; the N atoms of the heterocyclic moiety and the F substituent do not take part in hydrogen bonding.  相似文献   

16.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

17.
The title compound, C16H19BrO4, is a derivative of osthol, isolated from the seeds of Imperatoria Osthruthium. The structure was solved in space group P, with two mol­ecules in the asymmetric unit, and was refined to a final R factor of 0.064. The two mol­ecules in the asymmetric unit differ in the orientation of their brominated substituent group. The benzo­pyran ring displays aromatic character. The packing of the mol­ecules in the lattice is mainly due to C—H⋯O hydrogen bonds.  相似文献   

18.
A simple and efficient method is developed. Novel 2‐amino‐4‐quinolone derivatives are synthesized. The products that have several functional groups for possible future modifications are described.  相似文献   

19.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐eythro‐pento­furan­osyl)‐3‐vinyl‐1H‐pyrazolo­[3,4‐d]­pyrimidine monohydrate, C12H15N5O3·H2O, the conformation of the gly­cosyl bond is anti. The furan­ose moiety is in an S conformation with an unsymmetrical twist, and the conformation at the exocyclic C—C(OH) bond is +sc (gauche, gauche). The vinyl side chain is bent out of the heterocyclic ring plane by 147.5 (5)°. The three‐dimensional packing is stabilized by O—H·O, O—H·N and N—H·O hydrogen bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号