首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductance and other physical quantities are calculated in double quantum dots (DQD) connected in series in the limit of coherent tunnelling using a Green's function technique. The inter-dot Coulomb repulsion and the exchange interaction are studied by means of the Kotliar and Ruckenstein slave-boson mean-field approach. The crossover from the atomic to the molecular limit is analyzed in order to show how the conductance in the model depends on the competition between the level broadening (dot-lead coupling) and the dot-dot transmission. The double Kondo effect was found in the gate voltage characteristics of the conductance in the atomic limit. In the case, when each dot accommodates one electron, the Kondo resonant states are formed between dots and their adjacent leads and transport is dominated by hopping between these two resonances. In the molecular limit the conductance vanishes for sufficiently low gate voltages, which means the Kondo effect disappeared. For small dot-lead coupling the transport characteristics are very sensitive on the influence of the inter-dot Coulomb repulsion and the position of the local energy level. The resonance region is widened with increase of the inter-dot Coulomb interactions while the exchange interaction has opposite influence.  相似文献   

2.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

3.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

4.
We consider the Maxwell equations for an electromagnetic field propagating in a solid with a three-dimensional superlattice of quantum dots linked by strong tunneling along one axis, where electrons with different spin projections are affected by the strong Coulomb repulsion at a single site. We obtain a phenomenological equation in the form of the classical 1+1-dimensional sine-Gordon equation. Electrons are considered within the framework of quantum formalism taking into account the changes in the dispersion law provided by the presence of Coulomb interactions. The phenomenological equation is solved numerically, and the influence of Coulomb repulsion and the degree of band population on the propagation of ultra-short optical pulses is analyzed.  相似文献   

5.
Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur-Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.   相似文献   

6.
The voltage and the temperature behavior of inelastic interelectrode current mediated by a short molecular wire is analyzed within a nonlinear kinetic approach that accounts for strong Coulomb repulsion between transferring electrons. When the coupling to the heat bath occurs via high-frequency vibration modes we predict a generally nonlinear current-voltage characteristics (an Ohmic behavior at small voltage, rising towards saturation and being followed by an abrupt decrease at large voltage) and a bell-shaped current response vs temperature at not too large temperatures.  相似文献   

7.
Dynamical processes of myoglobin after photon-excited charge transfer between Fe ion and surrounding water anion are simulated by a molecular dynamics model. The roles of Coulomb interaction effect and water effect in the relaxation process are discussed. It is found that the relaxations before and after charge transfer are similar. Strong Coulomb interactions and less water mobility decrease Coulomb energy fluctuations. An extra transferred charge of Fe ion has impact on water packing with a distance up to 0.86nm.  相似文献   

8.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

9.
Cs2AgF4 was proposed to be an orbitally ordered ferromagnet based on recent neutron scattering data. Here, we report a detailed electronic structure study within the local spin density approximation also including strong Coulomb repulsion U. We investigate the influence of an orthorhombic distortion of the Ag environment and the importance of the on-site Coulomb repulsion. We find good quantitative agreement with both the experimentally observed exchange coupling and structural changes. Thus, our results strongly support that Cs2AgF4 is a strongly correlated charge-transfer insulator where the ferromagnetism is driven by orbital order.  相似文献   

10.
We present a method to discuss simultaneously the relative importance of molecular dynamic and geometric alignment induced by intense laser fields in theoretical view. This method divides the process of molecular alignment into three steps, which are tightly correlated with that of molecular multielectron dissociative ionization and Coulomb explosion. A fourth-order Runge-Kutta algorithm and a developed counting approach are used to calculate the angular distribution of molecules in the first and second steps of molecular alignment. The last step is described by a field-ionization, Coulomb explosion model. The angular distribution of molecules at the critical distance originated from geometric alignment is obtained by calculating the volume of shells associated with a series of particular angle. The final angular distributions of molecules are obtained by properly weighting the results of three steps. The numerical results of distinguishing between dynamic and geometric alignment for certain conditions are presented and discussed. Our computational results show that the alignment mechanism, which dominates the observed anisotropy of angular distributions of ionic fragments for a given condition, is determined by the dependences of the extent of dynamic and geometric alignment on laser parameters and molecular parameters.  相似文献   

11.
We study nonlinear transport for two coupled one-dimensional quantum wires or carbon nanotubes described by Luttinger liquid theory. Transport properties are shown to crucially depend on the contact length L c. For a special interaction strength, the problem can be solved analytically for arbitrary L c. For point-like contacts and strong interactions, a qualitatively different picture compared to a Fermi liquid emerges, characterized by zero-bias anomalies and strong dependence on the applied cross voltage. In addition, pronounced Coulomb drag phenomena are important for extended contacts. Received 28 July 2000  相似文献   

12.
We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.  相似文献   

13.
Semiclassical calculations are made of the lifetimes of metastable spherical carbon cluster dianions using a model potential based on electrostatics. The metastability is attributed to shape resonances resulting from the combination of the long range Coulomb repulsion and the shorter range electron-molecule interaction. Results for fullerene dianions show a strong dependence of the lifetimes on the molecular size. The transition from stable to metastable dianions is estimated to occur when the radius of the spherical molecule is about 5.5 Å. This simple model potential might provide a starting point for experimental and theoretical searches for the existence of stable dianions  相似文献   

14.
On the basis of the Holstein-Hubbard model the formation of polarons at finite densities is investigated by means of a variational approach appropriate for describing squeezing and correlation effects. An effective Hubbard model for the polarons is derived, where the correlations are treated within the slave-boson saddlepoint approximation. For low enough phonon frequencies, with increasing coupling an abrupt self-trapping transition from light to heavy polarons is found. With increasing density the squeezing effect increases, and the transition is shifted to higher couplings. In the case of an effective Coulomb repulsion, the self-trapping transition is shifted to lower couplings with increasing Hubbard interaction, and the effective polaron mass below the transition is enhanced. In the heavy polaron regime, the frequency-dependent polaron hopping conductivity is calculated. There occur qualitative finite-density and correlation effects on the zero-temperature absorption spectrum which are discussed with respect to their possible relevance to the midinfrared absorption in high-T c superconductors.  相似文献   

15.
We use non-equilibrium Green's function combined with density functional theory to investigate the electronic transport properties of two parallel molecular wires made of carbon atomic chains (triynes) capped with thiol. The results show that the transport behaviors clearly depend on the intermolecular distance when the two wires are separated by a relatively small distance. However, with increasing the wire spacing, the transport properties are dramatically affected by the molecule-electrode contact hollow-type and insensitive to the intermolecular distance. A quantum interference mechanism is proposed to interpret the contact hollow-type dependence of transport properties at large intermolecular distance.  相似文献   

16.
From first-principles calculations we determine the Coulomb interaction between two holes on oligo-acene and -thiophene molecules in a crystal, as a function of the oligomer length. The electronic polarization of the molecules that surround the charged oligomer reduces the bare Coulomb repulsion between the holes by approximately a factor of 2. The effects of relaxing the molecular geometry in the presence of holes is found to be significantly smaller. In all cases the effective hole-hole repulsion is much larger than the valence bandwidth, which implies that at high doping levels the properties of these organic semiconductors are determined by electron-electron correlations.  相似文献   

17.
We investigate the energy gaps and half-metallicity of the zigzag-edged β-graphyne nanoribbons via a tight-binding approach. In the presence of on-site Coulomb repulsion and proper transverse electric field strengths, the nanoribbons are forced into a half-metallic state by the electric field. A phase transition from half-metal to insulator is realized by changing the electric field or Coulomb potential. Both the electric field and Coulomb repulsion can open direct band gaps, resulting in a metal-insulator phase transition. The band gaps oscillate with the electric field, contrary to linear change with the Coulomb potential.  相似文献   

18.
The magnetic susceptibility, using dc and electron spin resonance (ESR) methods, the specific heat, and the infrared properties of the one-dimensional molecular semiconductors lithium phthalocyanine (LiPc) and the iodinated compound LiPcI have been investigated for temperatures K. LiPc has a half-filled conduction band and is expected to be an organic metal. However, due to the strong Coulomb repulsion the system is a one-dimensional Mott-Hubbard insulator with a Hubbard gap of 0.75 eV as inferred from optical measurements. The localized electrons along the molecular stacks behave like a S = 1/2 antiferromagnetic spin chain. The spin susceptibility, as determined by ESR experiments, and the magnetic contribution to the heat capacity show a Bonner-Fisher type of behavior with an exchange constant K. LiPcI is an intrinsic narrow-gap semiconductor with an optical gap of 0.43 eV. In ESR experiments it is silent, indicating that all the unpaired electrons have been removed from the macrocycle via doping with iodine. Received: 16 June 1998 / Accepted: 14 July 1998  相似文献   

19.
Electrical transport measurements on single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We review transport measurements on single-walled carbon nanotubes contacted by metal electrodes. At room temperature some devices show transistor action similar to that of p-channel field effect transistors, while others behave as gate-voltage independent wires. At low temperatures transport is usually dominated by Coulomb blockade. In this regime the quantum eigenstates of the finite-length tubes can be studied. At higher temperatures power law behaviour is observed for the temperature and bias dependence of the conductance. This is consistent with tunneling into a one-dimensional Luttinger liquid in a nanotube. We also discuss recent developments in contacting nanotubes which should soon allow study of their intrinsic transport properties. Received: 17 May 1999 / Accepted 18 May 1999 / Published online: 4 August 1999  相似文献   

20.
Using Hartree-Fock orbitals with residual Coulomb repulsion, we study spinless fermions in a two-dimensional random potential. When we increase the system size L at fixed particle density, the size dependence of the average inverse compressibility exhibits a smooth crossover from a 1/L 2 towards a 1/L decay when the Coulomb energy to Fermi energy ratio increases from 0 to 3. In contrast, the distribution of the first energy excitation displays a sharp Poisson-Wigner-like transition at . Received 13 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号