首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Polypyridyl complexes of Co decorated with 350-Da polyether chains (Co(350)(2+)) form molten phases of nucleic acids when paired with DNA counterions (Co(350)DNA) or 25-mer oligonucleotides. Analysis of voltammetry and chronoamperometry of mixtures of these phases with complexes having ClO(4)(-) counterions (Co(350)(ClO(4))(2)) and no other diluent provides charge transport rates from the oxidation and reduction currents for the complexes. As the mole fraction of the Co(350)(ClO(4))(2) complex in the mixture is varied from ca. 0.25 to 1, the physical diffusion constants derived from the Co(III/II) wave increase from 1 x 10(-11) cm(2)/s to 5 x 10(-10) cm(2)/s, and apparent diffusion constants dominated by the Co(II/I) electron self-exchange increase from 1 x 10(-10) cm(2)/s to 2 x 10(-8) cm(2)/s. Pure Co(350)DNA melts, containing no Co(350)(ClO(4))(2) complex, do not exhibit recognizable voltammetric waves; DNA suppresses the Co(II/I) electron transfer reactions of Co complexes for which it is the counterion. There are therefore two microscopically distinct kinds of Co(350) complexes, those with DNA and those with ClO(4)(-) counterions, with respect to their Co(II/I) electron-transfer dynamics, leading to percolative behavior in their mixtures. The electron-transfer rates of the Co(II/I) couple are controlled by the diffusive relaxation of the ionic atmosphere around the reaction pair, and the inactivity of the bound Co complexes can be attributed to the very low mobility of the anionic phosphate groups in the DNA counterion. Substitution of sulfonated polystyrene for DNA produced similar results, suggesting that this phenomenon is general to other polymer counterions of low mobility. We conclude that the measured Co(II/I) charge transport and electron-transfer rate constants reflect more the diffusive mobility of the perchlorate counterion than the intrinsic Co(II/I) electron hopping rate.  相似文献   

2.
The reactions of CoX(2) (X = Cl(-), Br(-), I(-) and ClO(4)(-)) with the tripodal polypyridine N(4)O(2)-type ligand bearing pivalamide groups, bis(6-(pivalamide-2-pyridyl)methyl)(2-pyridylmethyl)amine ligand (H(2)BPPA), afforded two types of Co(II) complexes as follows. One type is purple-coloured Co(II) complexes, [CoCl(2)(H(2)BPPA)] (1(Cl)) and [CoBr(2)(H(2)BPPA)] (1(Br)) which were prepared when X = Cl(-) and Br(-), respectively. The other type is pale pink-coloured Co(II) complexes, [Co(MeOH)(H(2)BPPA)](ClO(4)(-))(2) (2·(ClO(4)(-))(2)) and [Co(MeCN)(H(2)BPPA)](I(-))(2) (2·(I(-))(2)), which were obtained when X = I(-) and ClO(4)(-), respectively. From the reaction of 1(Cl) and NaN(3), a purple-coloured complex, [Co(N(3))(2)(H(2)BPPA)] (1(azide)), was obtained. These Co(II) complexes were characterized by X-ray structural analysis, IR and reflectance spectroscopies, and magnetic susceptibility measurements. All these Co(II) complexes were shown to be in a d(7) high-spin state based on magnetic susceptibility measurements. The former Co(II) complexes revealed a six-coordinate octahedron with one amine nitrogen, three pyridyl nitrogens, and two counter anions, and one coordinated anion, Cl(-), Br(-) and N(3)(-), forming intramolecular hydrogen bonds with two pivalamide N-H groups. On the other hand, the latter Co(II) complexes showed a seven-coordinate face-capped octahedron with one amine nitrogen, three pyridyl nitrogens, two pivalamide carbonyl oxygens and MeCN or MeOH. In these structures, intramolecular hydrogen bonding interaction was not observed, and the metal ion was coordinated by the pivalamide carbonyl oxygens and solvent molecule instead of the counter anions. The difference in coordination geometries might be attributable to the coordination ability and ionic radii of the counteranions; smaller strongly binding anions such as Cl(-), Br(-) and N(3)(-) gave the former complexes, whereas bulky weakly binding anions such as I(-) and ClO(4)(-) afforded the latter ones. In order to demonstrate this hypothesis, the small stronger coordinating ligand, azide, was added to complexes 2·(ClO(4)(-))(2) to obtain the dinuclear cobalt(II) complex in which two six-coordinate octahedral cobalt(II) species were bridged with azide, 3·(ClO(4)(-)). Also, the abstraction reaction of halogen anions from complexes 1(Cl) by AgSbF(6) gave a pale pink Co(II) complex assignable to 2·(SbF(6)(-))(2).  相似文献   

3.
Protonated angiotensin II and protonated leucine enkephalin‐based peptides, which included YGGFL, YGGFLF, YGGFLH, YGGFLK and YGGFLR, were subjected to ion/ion reactions with the doubly deprotonated reagents 4‐formyl‐1,3‐benzenedisulfonic acid (FBDSA) and 1,3‐benzenedisulfonic acid (BDSA). The major product of the ion/ion reaction is a negatively charged complex of the peptide and reagent. Following dehydration of [M + FBDSA‐H]? via collisional‐induced dissociation (CID), angiotensin II (DRVYIHPF) showed evidence for two product populations, one in which a covalent modification has taken place and one in which an electrostatic modification has occurred (i.e. no covalent bond formation). A series of studies with model systems confirmed that strong non‐covalent binding of the FBDSA reagent can occur with subsequent ion trap CID resulting in dehydration unrelated to the adduct. Ion trap CID of the dehydration product can result in cleavage of amide bonds in competition with loss of the FBDSA adduct. This scenario is most likely for electrostatically bound complexes in which the peptide contains both an arginine residue and one or more carboxyl groups. Otherwise, loss of the reagent species from the complex, either as an anion or as a neutral species, is the dominant process for electrostatically bound complexes. The results reported here shed new light on the nature of non‐covalent interactions in gas phase complexes of peptide ions that can be used in the rationale design of reagent ions for specific ion/ion reaction applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Electrospray ionization (ESI) of solutions containing adenine and AgNO(3) yields polymeric [Ad(x)+ Ag(y)-zH]((y-z)+) species. Density functional theory (DFT) calculations have been used to examine potential structures for several of the smaller ions while multistage mass spectrometry experiments have been used to probe their unimolecular reactivity (via collision-induced dissociation (CID)) and bimolecular reactivity (via ion-molecule reactions with the neutral reagents acetonitrile, methanol, butylamine and pyridine). DFT calculations of neutral adenine tautomers and their silver ion adducts provide insights into the binding modes of adenine. We find that the most stable [Ad + Ag](+) ion does not correspond to the most stable neutral adenine tautomer, consistent with previous studies that have shown that transition metal ions can stabilize rare tautomeric forms of nucleobases. Both the charge and the stoichiometry of the [Ad(x)+ Ag(y)-zH]((y-z)+) complexes play pivotal roles in directing the types of fragmentation and ion-molecule reactions observed. Thus, [Ad(2)+ Ag(2)](2+) is observed to dissociate to [Ad + Ag](+) and to react with butylamine via proton transfer, while [Ad(2)+ Ag(2)- H](+) fragments via loss of neutral adenine to form the [Ad + Ag(2)- H](+) ion and does not undergo proton transfer to butylamine. DFT calculations on several isomeric [Ad(2)+ Ag(2)](2+) ions suggest that planar centrosymmetric cations, in which two adjacent silver atoms are bridged by two N7H adenine tautomers via N(3),N(9)-bidentate interactions, are the most stable. The [Ad + Ag(2)-H](+) ion adds two neutral reagents in ion-molecule reactions, consistent with the presence of two vacant coordination sites. It undergoes a silver atom loss to form the [Ad + Ag - H](+) radical cation, which in turn fragments quite differently to the even electron [Ad + Ag](+) ion. Several other pairs of radical cation/even electron adenine-silver complexes were also found to undergo different fragmentation reactions.  相似文献   

5.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

6.
Five-coordinate metal complex ions of the type [ML](2+) [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and L= 1,9-bis(2-pyridyl)-2,5,8-triazanonane (DIEN-(pyr)(2)) and 1,9-bis(2-imidazolyl)-2,5,8-triazanonane (DIEN-(imi)(2)] have been reacted with acetonitrile in the gas phase using a modified quadrupole ion trap mass spectrometer. The kinetics and thermodynamics of these reactions show that the reactivity of these complexes is affected by metal electronic structure and falls into three groups: Mn(II) and Ni(II) complexes are the most reactive, Fe(II) and Co(II) complexes exhibit intermediate reactivity, and Cu(II) and Zn(II) complexes are the least reactive. To help explain the experimental trends in reactivity, theoretical calculations have been used. Due to the relatively large size of the metal complexes involved, we have utilized a two-layered ONIOM method to perform geometry optimizations and single point energy calculations for the [ML](2+) and [ML + CH(3)CN](2+) systems. The calculations show that the reactant five-coordinate complexes ([ML](2+)) exhibit structures that are slightly distorted trigonal bipyramidal geometries, while the six-coordinate complexes ([ML + CH(3)CN](2+)) have geometries that are close to octahedral. The Delta G values obtained from the ONIOM calculations roughly agree with the experimental data, but the calculations fail to completely explain the trends for the different metal complexes. The failure to consider all possible isomers as well as adequately represent pi-d interactions for the metal complexes is the likely cause of this discrepancy. Using the angular overlap model (AOM) to obtain molecular orbital stabilization energies (MOSE) also fails to reproduce the experimental trends when only sigma interactions are considered but succeeds in explaining the trends when pi interactions are taken into account. These results indicate that the pi-donor character of the CH(3)CN plays a subtle, yet important, role in controlling the reactivity of these five-coordinate complexes. Also, the AOM calculations are consistent with the experimental data when the [ML](2+) complexes have high-spin trigonal bipyramidal configurations. Generally, these results suggest that ion-molecule reactions can be very sensitive to metal complex coordination geometry and thus may have some promise for providing gas-phase coordination structure.  相似文献   

7.
The redox-active fac-[Mo(V)(mp)(3)](-) (mp: o-mercaptophenolato) bearing asymmetric O- and S-cation binding sites can bind with several kinds of metal ions such as Na(+), Mn(II), Fe(II), Co(II), Ni(II), and Cu(I). The fac-[Mo(V)(mp)(3)](-) metalloligand coordinates to Na(+) to form the contact ion pair {Na(+)(THF)(3)[fac-Mo(V)(mp)(3)]} (1), while a separated ion pair, n-Bu(4)N[fac-Mo(V)(mp)(3)] (2), is obtained by exchanging Na(+) with n-Bu(4)N(+). In the presence of asymmetric binding-sites, the metalloligand reacts with Mn(II)Cl(2)·4H(2)O, Fe(II)Cl(2)·4H(2)O, Co(II)Cl(2)·6H(2)O, and Ni(II)Cl(2)·6H(2)O to afford UV-vis-NIR spectra, indicating binding of these guest metal cations. Especially, for the cases of the Mn(II) and Co(II) products, trinuclear complexes, {M(H(2)O)(MeOH)[fac-Mo(V)(mp)(3)](2)}·1.5CH(2)Cl(2) (3·1.5CH(2)Cl(2) (M = Mn(II)), 4·1.5CH(2)Cl(2) (M = Co(II))), are successfully isolated and structurally characterized where the M are selectively bound to the hard O-binding sites of the fac-[Mo(V)(mp)(3)](-). On the other hand, a coordination polymer, {Cu(I)(CH(3)CN)[mer-Mo(V)(mp)(3)]}(n) (5), is obtained by the reaction of fac-[Mo(V)(mp)(3)](-) with [Cu(I)(CH(3)CN)(4)]ClO(4). In sharp contrast to the cases of 1, 3·1.5CH(2)Cl(2), and 4·1.5CH(2)Cl(2), the Cu(I) in 5 are selectively bound to the soft S-binding sites, where each Cu(I) is shared by two [Mo(V)(mp)(3)](-) with bidentate or monodentate coordination modes. The second notable feature of 5 is found in the geometric change of the [Mo(V)(mp)(3)](-), where the original fac-form of 1 is isomerized to the mer-[Mo(V)(mp)(3)](-) in 5, which was structurally and spectroscopically characterized for the first time. Such isomerization demonstrates the structural flexibility of the [Mo(V)(mp)(3)](-). Spectroscopic studies strongly indicate that the association/dissociation between the guest metal ions and metalloligand can be modulated by solvent polarity. Furthermore, it was also found that such association/dissociation features are significantly influenced by coexisting anions such as ClO(4)(-) or B(C(6)F(5))(4)(-). This suggests that coordination bonds between the guest metal ions and metalloligand are not too static, but are sufficiently moderate to be responsive to external environments. Moreover, electrochemical data of 1 and 3·1.5CH(2)Cl(2) demonstrated that guest metal ion binding led to enhance electron-accepting properties of the metalloligand. Our results illustrate the use of a redox-active chalcogenolato complex with a simple mononuclear structure as a multifunctional metalloligand that is responsive to chemical and electrochemical stimuli.  相似文献   

8.
The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.  相似文献   

9.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

10.
Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon–iodine (C―I) bond are subjected to UVPD with 266‐nm photons, which selectively cleaves the C―I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even‐electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non‐covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process. Examples of mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear species involving Fe(II), Co(II), Ni(II), and Cu(II) salts with a series of potentially heptadentate picolinic dihydrazone ligands with pyrazine, pyrimidine, and pyridine end groups are described in the present study. Iron and cobalt complexation reactions are complicated by redox processes, which lead to mixed-oxidation-state Co(II)/Co(III) systems when starting with Co(II) salts, and reduction of Fe(III) to Fe(II) when starting with Fe(III). Magnetic exchange within the polynuclear structural frameworks is discussed and related to the structural features.  相似文献   

12.
The preparations, X-ray structures, and detailed physical characterization are presented for new complexes involving an iron(II) center, a tetraimidazole ligand (TIM), and different carboxylates. [Fe(TIM)(C(6)H(5)CH(2)CO(2))](ClO(4)) (1) crystallizes in the Pbca space group with a = 10.8947(13), b = 20.343(2), and c = 22.833(3) A, Z = 8, and V = 5060.6(11) A(3). [Fe(TIM)(CH(3)CO(2))](ClO(4)) (2) crystallizes in the Ia space group with a = 17.117(2), b = 10.3358(12), and c = 25.658(3) A, beta = 90.301(13) degrees, Z = 8, and V = 4539.5(9) A(3). In both structures, the iron(II) is hexacoordinated to the four N(imidazole) donors of the TIM ligand and the two O donors of a bidentate carboxylate. The flexibility of the carboxylate bidentate coordination, symmetrical or more or less asymmetrical, associated with the steric demand of the TIM ligand results in a remarkable versatility of the Fe(II)N(4)O(2) coordination geometry. The diversity in carboxylate bidentate coordination modes has allowed us to clearly show the importance of the structural and electronic effects, through IR and M?ssbauer spectroscopy, of this apparently tenuous carboxylate shift. Comparison of the structural and M?ssbauer properties of these complexes with the non-heme ferrous site of photosynthetic systems (i) shows that the metric parameters of site 2b, including the symmetrically chelated bidentate carboxylate, are closer to those of the non-heme ferrous site in the bacterial reaction centers of Rhodopseudomonas viridis and R. sphaeroides and (ii) suggests that the ligand environment of the non-heme ferrous center of PS 2 is close to the axially distorted octahedral symmetry resulting from an asymmetrical bidentate coordination of the -CO(2) motif, as in complex 1.  相似文献   

13.

The reactions of ciprofloxacin (CIP) and norfloxacin (NOR) with iron(II) and iron(III) perchlorate have been investigated. The optical spectra support the formation of four complexes for each oxidation state with 1 : 1, 1 : 2, 1 : 3 and 1 : 4 metal to ligand molar ratios. The electrical conductivity and magnetic susceptibility measurements show that the isolated complexes are high spin and the Fe(ClO 4 ) 2 and Fe(ClO 4 ) 3 complexes behave as 1 : 2 and 1 : 3 electrolytes, respectively. The IR spectra indicate that CIP and NOR bind to the iron ion as bidentate ligands through the carbonyl oxygen atom and one of the oxygen atoms of the carboxylate group.  相似文献   

14.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

15.
The formation and dissociation of dimer complexes consisting of a transition metal ion and two polyether ligands is examined in a quadrupole ion trap mass spectrometer. Reactions of three transition metals (Ni, Cu, Co) with three crown ethers and four acyclic ethers (glymes) are studied. Singly charged species are created from ion-molecule reactions between laser-desorbed monopositive metal ions and the neutral polyethers. Doubly charged complexes are generated from electrospray ionization of solutions containing metal salts and polyethers. For the singly charged complexes, the capability for dimer formation by the ethers is dependent on the number of available coordination sites on the ligand and its ability to fully coordinate the metal ion. For example, 18-crown-6 never forms dimer complexes, but 12-crown-4 readily forms dimers. For the more flexible acyclic ethers, the ligands that have four or more oxygen atoms do not form dimer complexes because the acyclic ligands have sufficient flexibility to wrap around the metal ion and prevent attachment of a second ligand. For the doubly charged complexes, dimers are observed for all of the crown ethers and glymes, thus showing no dependence on the flexibility or number of coordination sites of the polyether. The nonselectivity of dimer formation is attributed to the higher charge density of the doubly charged metal center, resulting in stronger coordination abilities. Collisionally activated dissociation is used to evaluate the structures of the metal-polyether dimer complexes. Radical fragmentation processes are observed for some of the singly charged dimer complexes because these pathways allow the monopositive metal ion to attain a more favorable 2 + oxidation state. These radical losses are observed for the dimer complexes but not for the monomer complexes because the dimer structures have two independent ligands, a feature that enhances the coordination geometry of the complex and allows more flexibility for the rearrangements necessary for loss of radical species. Dissociation of the doubly charged complexes generated by electrospray ionization does not result in losses of radical neutrals because the metal ions already exist in favorable 2+ oxidation states.  相似文献   

16.
Reactions of tropolone with lead(II) trifluoromethanesulfonate, perchlorate, and nitrate in water/methanol mixtures at pH below 1.0 lead to the formation of three different polymeric lead(II) complexes, [Pb(trop)(CF3SO3)(H2O)]n (1), [Pb3(trop)4(ClO4)2]n (2), and [Pb2(trop)2(NO3)2(CH3OH)]n (3), respectively. On the other hand, if the reactions are performed at pH above 2.0, the dimeric compound [Pb(trop)2]2 (4) is obtained independently of the lead(II) salt used, as long as lead(II) does not form any strong complexes with the counterion. The crystal structures of these compounds have been determined by single-crystal X-ray diffraction. The structure of solid tetrakis(tropolonato)lead(IV), Pb(trop)4 (5), has been studied by means of the EXAFS technique because it was not possible to obtain sufficiently large single crystals. In the polymeric structures, the counterions are coordinated to the lead(II) ions and act as bridges. The tropolonato ligand behaves as a chelating agent and a tri- or tetraconnective bridge. The total coordination number of the lead(II) ion is five in compound 4, seven in 1 and 3, and eight in 2, and the lead(IV) ion in 5 is eight-coordinated. The 6s2 lone electron pair on the lead(II) ion seems to be stereochemically active in all lead(II) complexes studied. All compounds have been characterized by IR spectroscopy as well.  相似文献   

17.
A high-pressure 20-segment quadrupole collision cell (HP-SQCC), which replaces a collision cell in a modified triple-quadrupole mass spectrometer is investigated in this work as an ion-molecule reactor with an inherent heat source. The highest working pressure achievable is 20 mTorr. The 20 quadrupole segments permit superimposition of linear axial electric field over the conventional quadrupole field in the radial direction. The axial and radial fields are employed to control ion temperature. Heat is transferred to the reactants through ion frictional heating. The HP-SQCC utilizes a combination of several physicochemical phenomena and an attempt is made to examine a range of ion-molecule reactions. Due to a sufficiently large number of reactive collisions, the reactor is used to promote sequential exothermic ion-molecule reactions. To characterize the performance of the HP-SQCC, the various ion-molecule reactions between the fragment ions of ferrocene (Cp(2)Fe), cobaltocene (Cp(2)Co) and nitrogen, oxygen, water and carbon monoxide are investigated.  相似文献   

18.
Noncovalent complexation between tetratosylated tetraethyl resorcarene (1) and primary, secondary, and tertiary alkyl ammonium ions (mMe, dMe, tMe, mEt, dEt, tEt, dBu, and dHex) was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Interactions of the noncovalent complexes were investigated by means of competition experiments, collision-induced dissociation (CID) experiments, ion-molecule reactions with tripropylamine and gas phase H/D-exchange reactions with deuteroammonia. Gas phase ion-molecule reactions gave especially valuable information about the structure and properties of the complexes. Resorcarene 1 formed relatively stable 1:1 complexes with all aliphatic alkyl ammonium ions. Steric properties of the alkyl ammonium ions and proton affinities of the conjugate amines noticeably affected the complexation properties, indicating the importance of hydrogen bonding in these complexes. According to the competition experiments, the thermodynamically most stable host-guest complexes were formed with alkyl ammonium ions that were most substituted and had the longest alkyl chains. In CID experiments, release of an intact free guest ion or dissociation of the host was observed to depend on the proton affinity of the amine and the strength of the hydrogen bond that was formed. In ion-molecule reactions with tripropylamine, a guest exchange reaction occurred with all alkyl ammonium ion complexes with reaction rates mostly dependent on the steric properties of the original guest ion. In H/D-exchange reactions the N-H hydrogen atoms of the guest ion were exchanged with deuterium, whereas the resorcinol hydrogen atoms remained unchanged.  相似文献   

19.
2,2'-Bis[2-(1-propylbenzimidazol-2-yl)]biphenyl), 4, and its bis complexes with Fe(II) and Mn(II) have been prepared and characterized structurally and spectroscopically. Ligand 4 adopts an open, "trans" conformation in the solid state with the benzimidazole (BzIm) groups on opposite sides of the biphenyl unit. In its complexes with metal ions, a "cis" conformation is observed, and 4 behaves as a geometrically constraining bidentate ligand with four planar groups connected by three "hinges". Reaction of 4 with Fe(II) or Mn(II) yielded isomorphous crystals (space group Pnn2) of Fe(II)(4)2.(ClO4)2 and Mn(II)(4)2.(ClO4)2, in which the M(II)(4)2 cations exhibit distorted-tetrahedral coordination geometries (N-M-N angles, 109 +/- 11 degrees ) enforced by rigid, chiral nine-membered M(4) rings in the twist-boat-boat conformation. Individually, the cations show R,R or S,S stereochemistry, and the crystals are racemates. Mn(II)(4)2.(ClO4)2 exhibits a quasi-reversible Mn(II) --> Mn(III) oxidation at E(1/2) = 0.64 V; the corresponding Fe(II) --> Fe(III) oxidation occurs at E(1/2) = 1.76 V. The electrochemical stability of the Fe(III) oxidation state in this system suggests the possibility of isolating an unusual pseudotetrahedral Fe(III)N(BzIm)(4) species. Ultraviolet spectra of the iron and manganese complexes are dominated by absorptions of the ligand 4 blue-shifted by approximately 2000-3000 cm(-1). Ligand-field absorptions were observed for the Fe(II) complex; those for the Mn(II) complex were obscured by tailing ultraviolet absorptions. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-spin Mn(II) complex, while for the Fe(II) complex, the falloff of the magnetic moment with decreasing temperature is indicative of zero-field splitting with D approximately 4 cm(-1).  相似文献   

20.
The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号