首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
For a data set with 30 direct azo dyes taken from literature, quantitative structure-activity relationship (QSAR) analyses have been performed to model the affinity of the dye molecules for the cellulose fiber. The electronic structure of the compounds was characterized using quantum chemical gas-phase (AM1) and continuum-solvation molecular orbital parameters. As regards the solution phase, COSMO appears to be better suited than SM2 in quantifying relative trends of the aqueous solvation energy. For the dye-fiber affinity, the leave-one-out prediction capability of multilinear regression equations is superior to CoMFA, with predictive squared correlation coefficients ranging from 0.63 (pure CoMFA) to 0.89. At the same time, solution-phase CoMFA is superior to previously derived AM1-based CoMFA models. As a general trend, the dye-fiber affinity increases with increasing electron donor capacity that corresponds to an increasing hydrogen bond acceptor strength of the azo dyes. The discussion includes the consideration of structural features that are likely to be involved in dye-fiber and dye-dye hydrogen bonding interactions, and possible links between CoMFA electrostatic results and the atomic charge distribution of the compounds.  相似文献   

3.
The Index of Ideality of Correlation (IIC) is a new criterion of the predictive potential for quantitative structure–property/activity relationships. The value of the IIC is a mathematical function sensitive to the value of the correlation coefficient and dispersion (expressed via mean absolute error). The IIC has been applied to develop QSAR models for skin sensitization achieving good predictive potential. The ‘ideal correlation’ is based on elementary fragments of simplified molecular input-line entry system (SMILES) and on the taking into account of the total numbers of nitrogen, oxygen, sulphur and phosphorus in the molecule.  相似文献   

4.
5.
A Quantitative structure–activity relationship study is performed on a set of organophosphorus compounds to reveal structural and quantum‐chemical features influencing the toxic effect. The properties derived from the topological analysis of the electron density have been used to model the toxicity data. A multiple linear regression analysis in conjunction with genetic algorithm is used in the study, followed by subsequent validation of the results. Obtained QSAR models are beneficial for virtual screening of toxicity for new compounds of interest. Because toxicity of organophosphorus compounds is dependent on conformational properties, a conformational search has been performed before optimization of geometries. All quantum‐chemical calculations are carried out at DFT/B3LYP level of theory with 6‐311++G(d,p) basis set. Frequency calculations are performed after full geometry optimization. Ab initio wave functions were obtained for further analysis and evaluation of quantum topological properties of target molecules. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Novel shape descriptors for molecular graphs.   总被引:2,自引:0,他引:2  
We report on novel graph theoretical indices which are sensitive to the shapes of molecular graphs. In contrast to the Kier's kappa shape indices which were based on a comparison of a molecular graph with graphs representing the extreme shapes, the linear graph and the "star" graph, the new shape indices are obtained by considering for all atoms the number of paths and the number of walks within a graph and then making the quotients of the number of paths and the number of walks the same length. The new shape indices show much higher discrimination among isomers when compared to the kappa shape indices. We report the new shape indices for smaller alkanes and several cyclic structures and illustrate their use in structure-property correlations. The new indices offer regressions of high quality for diverse physicochemical properties of octanes. They also have lead to a novel classification of physicochemical properties of alkanes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号