首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of aeration rate and agitation speed on β-carotene production from molasses by Blakeslea trispora in a stirred-tank fermentor and optimization of the production of the pigment in a bubble column reactor were investigated. In addition, a central composite design was employed to determine the maximum β-carotene concentration at optimum values for the process variables (aeration rate, sugar concentration, linoleic acid, kerosene). By image analysis of the morphology of the fungus, a quantitative characterization of the hyphae and zygospores formed was obtained. The hyphae were differentiated to intacthyphae, vacuolated hyphae, evacuated cells and degenerated hyphae. An increased proportion of zygospores was correlated to high β-carotene production. In the stirred-tank fermentor, the highest concentration of the carotenoid pigment (92.0 mg/L) was obtained at an aeration rate of 1.5 vvm and agitation speed of 60 rpm. In the bubble column reactor, the aeration rate and concentration of sugars, linoleic acid, kerosene, and antioxidant significantly affected the production of β-carotene. In all cases, the fit of the model was found to be good. Aeration rate, sugar concentration, linoleic acid, and kerosene had a strong positive linear effect on β-carotene concentration. Moreover, the concentration of the pigment was significantly influenced by the negative quadratic effects of the given variables and by their positive or negative interactions. Maximum β-carotene concentration (360.2 mg/L) was obtained in culture grown in molasses solution containing 5% (w/v) sugar supplemented with linoleic acid (37.59 g/L), kerosene (39.11 g/L), and antioxidant (1.0 g/L).  相似文献   

2.
Probiotics with ability to produce conjugated linoleic acid (CLA) is considered as an additive health benefit property for its known role in colon cancer mitigation. The conversion involves the biohydrogenation of the unsaturated fatty acid into conjugated form. Probiotic strain Pediococcus spp. GS4 was efficiently able to biohydrogenate linoleic acid (LA) into its conjugated form within 48 h of incubation. Quantum of CLA produced with a concentration of 121 μg/ml and sustained cell viability of 8.94 log cfu/ml maximally. Moreover, antibacterial effect of LA on the strain ability for biohydrogenation was examined at different concentrations and concluded to have a direct relationship between LA and amount of CLA produced. The efficiency of the strain for CLA production at different pH was also estimated and found maximum at pH?6.0 with 149 μg/ml while this ability was reduced at pH?9.0 to 63 μg/ml. Sesame oil, which is rich in the triacylglycerol form of LA, was also found to act as a substrate for CLA production by Pediococcus spp. GS4 with the aid of lipase-catalyzed triacylglycerol hydrolysis and amount of CLA produced was 31 μg/ml at 0.2 % while 150 μg/ml at 1.0 % of lipolysed oil in skim milk medium. Conjugated form was analyzed using UV scanning, RP-HPLC, and GC-MS. This study also focused on the alternative use of lipolysed sesame oil instead of costly LA for biohydrogenation and could be a potential source for the industrial production of CLA.  相似文献   

3.
Carob pod: A new substrate for citric acid production by Aspergillus niger   总被引:1,自引:0,他引:1  
The production of citric acid from carob pod extract byA. niger in surface fermentation was investigated. A maximum citric acid concentration (85.5 g/L), citric acid productivity (4.07 g/L/d), specific citric acid production rate (0.18 g/g/d), and specific sugar uptake rate (0.358 g/g/d) was achieved at an initial sugar concentration of 200 g/L, pH of 6.5, and a temperature of 30°C. Other kinetic parameters, namely, citric acid yield, biomass yield, specific biomass production rate, and fermentation efficiency were maximum at pH 6.5, temperature 30°C, and initial sugar concentration 100 g/L. The external addition of methanol into the carob pod extract at a concentration up to 4% (v/v) improved the production of citric acid.  相似文献   

4.
The antioxidant and antiproliferative activities of the essential oils from Laurus nobilis leaves and seeds in relation to their composition were analysed. The most abundant components of the leaf essential oil were 1,8-cineole, 1-p-menthen-8-ethyl acetate, linalool and sabinene, while the seed oil was characterised by β-ocimene, 1,8-cineole, α-pinene and β-pinene as main constituents. Both seed and leaf essential oils exhibited a scavenging effect on the DPPH radical, with IC?? values of 66.1 and 53.5?μg?mL?1, respectively. The leaf essential oil showed the strongest antioxidant activity in the β-carotene/linoleic acid system, with an IC?? value of 35.6?μg?mL?1 after 30?min of incubation. Both leaf and seed oils inhibited proliferation of the K562 tumour cell line with IC?? values of 95 and 75?μg?mL?1, respectively. The L. nobilis leaf oil showed a percentage of erythroide differentiation of 15% at a concentration of 10?μg?mL?1. A value of 12% was found for the seed essential oil at a concentration of 50?μg?mL?1. When the oils were added to a suboptimal concentration of the commercial drug, cytosine arabinoside, a clear synergic effect was observed.  相似文献   

5.
Cyclodextrin glucanotransferase production from Bacillus clausii E16, a new bacteria isolated from Brazilian soil samples was optimized in shake-flask cultures. A 2(4) full-factorial central composite design was performed to optimize the culture conditions, using a response surface methodology. The combined effect among the soluble starch concentration, the peptone concentration, the yeast extract concentration, and the initial pH value of the culture medium was investigated. The optimum concentrations of the components, determined by a 2(4) full-factorial central composite design, were 13.4 g/L soluble starch, 4.9 g/L peptone, 5.9 g/L yeast extract, and initial pH 10.1. Under these optimized conditions, the maximum cyclodextrin glucanotransferase activity was 5.9 U/mL after a 48-h fermentation. This yield was 68% higher than that obtained when the microorganism was cultivated in basal culture medium.  相似文献   

6.
IntroductionThe biosynthesis of unsaturated fatty acidshasattracted more attention in recent years. Forexample,linoleic and linolenic acids are importantmaterials for pharmaceutical and food industries.Besides,they can be used to synthesize paint,printing ink and surfactant,etc. A number ofmicroorganisms have been studied as potentialcommercial sources to produce unsaturated fattyacids[1] .Agricultural and industrial products,by-products,etc. have been employed in thecultivation of those orga…  相似文献   

7.
汪慧敏  孙淼  屈锋 《色谱》2019,37(7):773-777
建立了毛细管电泳同时分析5种有机酸的间接紫外检测法。优化了背景电解质溶液中表面活性剂十四烷基三甲基溴化铵(TTAB)的浓度和溶液pH。优化后的电泳分析条件如下:含0.4 mmol/L TTAB的15 mmol/L邻苯二甲酸氢钾溶液为背景电解质(pH 5.6);分离电压-15 kV;检测波长254 nm;分离温度25℃;进样压力5 kPa;进样时间5 s。在此条件下,可在6 min内完成5种有机酸的同时分离检测,线性范围为甲酸15~600 mg/L、苹果酸30~800 mg/L、柠檬酸20~700 mg/L、乙醇酸40~500 mg/L和乳酸30~5000 mg/L,线性相关系数为0.9983~0.9998;检出限为0.1~2.0 μg/g。该方法可用于检测水状、乳状、膏状3类化妆品中的5种有机酸。在3个加标水平下,有机酸分析的回收率为95.0%~101.6%,RSD在2.0%以内。该方法操作简单,分析快速,安全环保,灵敏度高,重现性好,有望用于化妆品生产和保存过程中有机酸的监测。  相似文献   

8.
Jatropha oil, a non-edible vegetable oil, may be an alternative substrate to food-grade oils for bioplastic production. Jatropha oil contains 93.9% palmitic acids, oleic acids and linoleic acids. High P(3HB) accumulation of 87 wt% from 13.1 g/L of cell dry weight (CDW) was obtained by Cupriavidus necator H16 when 12.5 g/L of jatropha oil and 0.54 g/L of urea were used. Lipase activity increased in the initial stages of P(3HB) production, when 1 g/L of jatropha oil was added to the preculture medium. Addition of oil in preculture did not affect final CDW or P(3HB) accumulation. P(3HB) production in a 10 L lab-scale fermenter gave a yield of 0.78 g P(3HB) per g jatropha oil used after 48 h. For the first time, this study proved that jatropha oil is a feasible and excellent carbon source for P(3HB) biosynthesis by C. necator H16 with potential for large-scale production. The toxins in jatropha oil did not affect the P(3HB) biosynthesis.  相似文献   

9.
In this study, we investigated and compared the oil yield, physicochemical properties, fatty acid composition, nutrient content, and antioxidant ability of Xanthoceras sorbifolia Bunge (X. sorbifolia) kernel oils obtained by cold-pressing (CP), hexane extraction (HE), aqueous enzymatic extraction (AEE), and supercritical fluid extraction (SFE). The results indicated that X. sorbifolia oil contained a high percentage of monounsaturated fatty acids (49.31–50.38%), especially oleic acid (30.73–30.98%) and nervonic acid (2.73–3.09%) and that the extraction methods had little effect on the composition and content of fatty acids. X. sorbifolia oil is an excellent source of nervonic acid. Additionally, the HE method resulted in the highest oil yield (98.04%), oxidation stability index (9.20 h), tocopherol content (530.15 mg/kg) and sterol content (2104.07 mg/kg). The DPPH scavenging activity rates of the oil produced by SFE was the highest. Considering the health and nutritional value of oils, HE is a promising method for X. sorbifolia oil processing. According to multiple linear regression analysis, the antioxidant capacity of the oil was negatively correlated with sterol and stearic acid content and positively correlated with linoleic acid, arachidic acid and polyunsaturated fatty acid content. This information is important for improving the nutritional value and industrial production of X. sorbifolia.  相似文献   

10.
Immobilized cells ofClostridium thermoaceticum for acetic acid production has been investigated. Using κ-carrageenan gel as the immobilization-matrix, high cell concentration within the gel could be achieved and thus lead to high volumetric acetic acid productivity. Batch experiments using 3% gel showed that cell concentration up to 65 g (dry cell weight)/L gel could be achieved. These dry weight cell concentrations in the gel through immobilization are typically 10–15 times greater than what can be obtained in free-cell fermentations. The specific growth rate and acetic acid formation rate were similar to those observed for the free cells. Continuous culture experiments using a feed medium containing 20 g/L of glucose were performed where the reactor contained 50% by volume of the carrageenan gel and the pH was controlled at 6.9. Different steady states were acheived at dilution rates ranging from 0.061 to 0.399 h?1. Cells grew mainly near the surface of the gel and reached maximum concentration within the matrix of approximately 35 g/L. Dilution rates much greater than the maximum specific growth rate were obtained, which resulted in volumetric productivity up to 4.9 g/L-h. This value was significantly greater than that for the conventional continuous culture with free cells. Using a 40 g/L feed glucose concentration, steady states could be achieved between dilution rates of 0.12–0.4 h?1. The maximum productivity further increased to 6.9 g/L-h at a dilution rate of 0.37 h?1 and at an acetic acid concentration of 19 g/L. The cell concentration was 60 g (dry weight)/L gel at steady state.  相似文献   

11.
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or synthetic substances ( tert-butyl hydroxy anisole (BHA), Trolox) has been evaluated by monitoring volatile carbonyl compounds released in model lipid systems subjected to peroxidation. The procedure employed methodology previously developed for the determination of carbonyl compounds as their pentafluorophenylhydrazine derivatives which were quantified, with high sensitivity, by means of capillary gas chromatography with electron-capture detection. Linoleic acid and sunflower oil were used as model lipid systems. Lipid peroxidation was induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 degrees C, 12 h) and in sunflower oil by heating in the presence of O2 (220 degrees C, 2 h). The change in hexanal (the main lipoxidation product) concentration found in the lipid matrix subjected to oxidation with and without the substance being tested was used to calculate the antioxidant protection effect. These procedures were employed to evaluate the antioxidant activity of the essential oils of cilantro ( Coriander sativum L.), fennel ( Foeniculum vulgare Mill.), rosemary ( Rosmarinus officinalis L.), "salvia negra" ( Lepechinia schiedeana), and oregano ( Origanum vulgare L.), and the well-known antioxidants BHA, vitamin E, and Trolox, its water-soluble analog. In the sunflower oil system, the essential oils had a stronger protective effect against lipid peroxidation than BHA, vitamin E, and Trolox within the range of concentrations examined (1-20 g L-1). The highest protecting effect, corresponding to a 90% drop in hexanal release, was observed for cilantro oil at 10 g L-1.  相似文献   

12.
The aim of this work was to characterize an exopolysaccharide by Rhodotorula glutinis KCTC 7989 and to investigate the effect of the culture conditions on the production of this polymer. The extracellular polysaccharide (EPS) produced from this strain was a novel acidic heteropolysaccharide composed of neutral sugars (85%) and uronic acid (15%). The neutral sugar composition was identified by gas chromatography as mannose, fucose, glucose, and galactose in a 6.7:0.2:0.1:0.1 ratio. The molecular weight of purified EPS was estimated to be 1.0−3.8×105 Dalton, and the distribution of the molecular weight was very homogeneous (polydispersity index =1.32). The EPS solution showed a characteristic of pseudoplastic non-Newtonian fluid at a concentration >2.0% in distilled water. The maximum EPS production was obtained when the strain was grown on glucose (30 g/L). Ammonium sulfate was the best suitable nitrogen source for EPS production. The highest yield of EPS was obtained at a carbon to nitrogen ratio of 15. The EPS synthesis was activated at the acidic range of pH 3.0–5.0 and increased when the pH of the culture broth decreased naturally to <2.0 during the fermentation. When the yeast was grown on glucose (30 g/L) and ammonium sulfate (2 g/L) at 22°C at an initial pH of 4.0, EPS production was maximized (4.0 g/L), and the glucose-based production yield coefficient and carbon-based production yield coefficient were 0.30 g of EPS/g of glucose and 0.34 g (carbon of EPS)/g (carbon of glucose), respectively.  相似文献   

13.
A sensitive and robust on-line LC/MS method was developed for quantitative determination of linoleic acid,docosahexaenoic acid and docosanoic acid from edible oil samples.The oil samples were dissolved in chloroform-isopropyl alcohol(20:80,v:v)solution and the three fatty acids were separated by HPLC with a C4 column using 10 mmol/L ammonium acetate-isopropyl alcohol-acetonitrile(20:40:40,v:v:v)mobile phase in isocratic elution.Electrospray ionization mass spectrometry with the selected ion recording monitoring was used to detect and quantify the fatty acid.The calibration curves were linear in the range of 10.00–5000 pg/mL for linoleic acid and docosanoic acid,and 1.000–500.0 pg/mL for docosahexaenoic acid.The limit of detection was 2.0 pg/mL for linoleic acid,3.0 pg/mL for docosanoic acid,and 0.20 pg/mL for docosahexaenoic acid.The results showed that the method described in this paper could be utilized for rapid determination of three fatty acids at picogram levels in edible oils.  相似文献   

14.
Chen X  Zhang Y  Wang Z  Zu Y 《Natural product research》2011,25(19):1807-1816
In this study, an orthogonal array design OA? (3?) was employed to optimise the conditions of supercritical carbon dioxide (SC-CO?) extraction of Pinus koraiensis nut oil. The effects of pressure, temperature and extraction time on the oil yield were investigated. Next, the fatty acid composition of the oil was examined by gas chromatography-mass spectrometry (GC-MS). The in vivo antioxidant activity of the oil was determined by estimating the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and the content of malondialdehyde (MDA) in rats fed with a high-fat diet. The results showed that extraction pressure and time were the main variables that influenced the oil yields. The optimal conditions with which to obtain highest yield of oil were determined to be 5760.83?psi, 50°C and 3.0?h (extraction yield was 458.5?g?kg?1); nine compounds, constituting about 99.98% of the total oil, were identified. The most abundant polyunsaturated fatty acids identified in the oil, linoleic acid and α-linolenic acid, constituted 41.79% and 15.62% of the oil, respectively. Moreover, the results on their antioxidant activities showed that the oil could improve the activities of SOD, GSH-Px and T-AOC, and reduce the content of MDA significantly, in the serum. These results indicate that P. koraiensis nut oil obtained by SC-CO? extraction had excellent antioxidant activities.  相似文献   

15.
A novel capillary electrophoresis methodology using UV indirect detection (224 nm) for the analysis of trans-fatty acids in hydrogenated oils was proposed. The electrolyte consisted of a pH 7 phosphate buffer at 15 mmol x L(-1) concentration containing 4 mmol.L(-1) sodium dodecylbenzenesulfonate, 10 mmol x L(-1) polyoxyethylene 23 lauryl ether (Brij 35), 2% 1-octanol and 45% acetonitrile. Under the optimized conditions, ten fatty acids, C12:0, C13:0 (internal standard), C14:0, C16:0, C18:0, C18:1c, C18:1t, C18:2cc, C18:2tt and C18:3ccc were baseline-separated in less than 12 min. The proposed methodology was applied to monitor the formation of trans-fatty acids during hydrogenation of Brazilnut oil. A crude oil sample (42.1% linoleic acid, 37.3% oleic acid, 13.4% palmitic acid, and 7.0% stearic acid) was mixed with 0.25% of a nickel-based catalyst and submitted to two independent hydrogenation conditions: 175 degrees C, 3 atm, 545 rpm for 60 min (GH(1) sample), and 150 degrees C, 1 atm, 545 rpm for 30 min (GH(2) sample). For the most severe hydrogenation condition (higher temperature and pressure, under longer reactional period), a more complete conversion of linoleic and oleic acids into stearic acid occurred with concomitant formation of the trans-species, elaidic acid (C18:1t). For the milder hydrogenation procedure that generated sample GH(2), larger amounts of linoleic and oleic acids remained, in addition to the transformations already observed in the GH(1) sample.  相似文献   

16.
In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively – palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage.  相似文献   

17.
In this study, composition of essential oil and antioxidant capacity of Centaurea drabifolia subsp. detonsa were investigated. The antioxidant capacity of the methanolic extract was evaluated by various methods including measuring the total phenolic content, total antioxidant capacity, free radical scavenging activity (DPPH assay), β-carotene/linoleic acid bleaching assay and ferric and cupric ion reducing power assay. The composition of essential oil was identified by using gas chromatography-mass spectrometry. Totally, 41 compounds were described in the essential oil. Germacrene D (44.829%) was determined as the major compound of the essential oil. The total phenolic content, total antioxidant capacity, inhibition rate of oxidation of linoleic acid, IC(50) (in DPPH assay) and EC(50) (in reducing power) value were found to be 40.454?mg?GAE/g, 100.840?mg?AAE/g, 65.639%, 39.584?μg?mL(-1) and 0.603?mg?mL(-1), respectively. The results indicated that the extract of C. drabifolia subsp. detonsa has strong antioxidant properties and this species can be used as a natural antioxidant in food processing and pharmaceutical industries.  相似文献   

18.
Physicochemical characteristics and fatty acid composition of Lasiococca comberi Haines (Euphorbiaceae), an endangered forest tree species, were determined for the first time. The oil, protein, crude fibre and carbohydrate contents in seeds were 41.5, 13.8, 22.2 and 11.6%, respectively. The refractive index, pH, specific gravity, saponification value, iodine value, peroxide value and p-anisidine value of seed oil were 1.4781, 6.4, 0.9, 178.4 mg KOH/g, 196 g I2/100 g of oil, 5.1 mEq O2/kg and 188.4, respectively. The predominant fatty acids were linolenic acid (65.3%), oleic acid (13.8%), linoleic acid (7.1%) and palmitic acid (5.3%). HPLC analysis revealed the presence of α-tocopherol (13.2 mg/100 g) and γ-tocopherol (6.3 mg/100 g) as the major tocopherols. The results indicated that L. comberi seed oil can be classified as drying oil having possible applications in different industries and as an important dietary source of omega-3 fatty acids.  相似文献   

19.
Production of succinic acid by anaerobiospirillum succiniciproducens   总被引:1,自引:0,他引:1  
The effect of an external supply of carbon dioxide and pH on the production of succinic acid byAnaerobiospirillum succiniciproducens was studied. In a rich medium containing yeast extract and peptone, when the external carbon dioxide supply was provided by a 1.5M Na2CO3 solution that also was used to maintain the pH at 6.0, no additional carbon dioxide supply was needed. In fact, sparging CO2 gas into the fermenter at 0.025 L/L-min or higher rates resulted in significant decreases in both production rate and yield of succinate. Under the same conditions, the production of the main by-product acetate was not affected by sparging CO2 gas into the fermenter. The optimum pH (pH 6.0) for the production of succinic acid was found to be in agreement with results previously reported in the literature. Succinic acid production also was studied in an industrial-type inexpensive medium in which light steep water was the only source of organic nutrients. At pH 6.0 and with a CO2 gas sparge rate of 0.08 L/L-min, succinate concentration reached a maximum of 32 g/L in 27 h with a yield of 0.99 g succinate/g glucose consumed.  相似文献   

20.
Interest in medicinal plants and fruits has increased in recent years due to people beginning to consume natural foods. This study aims to investigate the total phenolic flavonoid content, antioxidant activity, condensed tannin content, oil content, and fatty acid compositions of five local breeds of Berberis spp. from Bayburt, Turkey, and their antioxidant and antimicrobial activities. The fatty acid composition of samples was performed with gas chromatography-mass spectrometry (GC-MS), and the total fatty acid content of samples was between 6.12% and 8.60%. The main fatty acids in Berberis spp. samples were α-linolenic acid (32.85–37.88%) and linoleic acid (30.98–34.28%) followed by oleic acid (12.85–19.56%). Two antioxidant assays produced similar results, demonstrating that extracts of wild B. vulgaris L. had the highest ferric reducing antioxidant power (FRAP) (621.02 μmol FeSO4.7H2O/g) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) (0.10 SC50 mg/mL) values. According to principal component analysis (PCA), four components were determined. In addition, two main groups were determined according to hierarchical cluster analysis (HCA), and wild and culture of B. vulgaris L. were in different subgroups. This is the first original report about the fatty acid composition and oil content of Berberis spp. grown in Bayburt, Turkey. The obtained results indicate that B. integerrima Bunge and B. vulgaris, which have especially remarkable fatty acid content, antioxidant, and antimicrobial activity, could be potential sources for these properties in different areas of use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号