首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Perfluoro oxymethylene vinyl ethers have been formed by a multi-step synthesis. The key intermediates are low molecular weight perfluoropolyether (PFPE) fluoroformates CF3O(CF2O)nCOF (I) n=1-6 obtained from the photo-oxidation of perfluoro propene (HFP) in perfluorohexane. Under certain conditions the light-mediated fluorination of PFPE fluoroformates (I) gives PFPE hypofluorites CF3O(CF2O)nCF2OF (II), which can be added to sym dichlorodifluoroethene to form the dichloro adduct CF3O(CF2O)nCF2OCFClCF2Cl (III) which, after dechlorination, gives the desired vinyl ethers CF3O(CF2O)nCF2OCFCF2 (IV). Every reaction step has to be properly controlled as far as the reaction variables are concerned. A mechanistic scheme is presented that is consistent with the observed experimental data.  相似文献   

2.
The C,N-chelated tri-, di- and monoorganotin(IV) halides react with equimolar amounts of CF3COOAg to give corresponding C,N-chelated organotin(IV) trifluoroacetates. The set of prepared tri-, di- and monoorganotin(IV) trifluoroacetates bearing the LCN ligand (where LCN is 2-(N,N-dimethylaminomethyl)phenyl-) was structurally characterized by X-ray diffraction analyses, multinuclear NMR and IR spectroscopy. In the case of triorganotin(IV) trifluoroacetates and (LCN)2Sn(OC(O)CF3)2, no tendency to form hydrolytic products, or instability towards the moisture was observed. LCNRSn(OC(O)CF3)2 (where R is n-Bu or Ph) and LCNSn(OC(O)CF3)3 forms upon crystallization from THF in the air mainly dinuclear complexes in which the two tin atoms are interconnected either by hydroxo-bridges or by an oxo-bridge and/or by a bridging trifluoroacetate(s). In the case of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2, a zwitterionic stannate of formula LCN(n-Bu)Sn(OC(O)CF3)2·CF3COOH was isolated from the mother liquor, too. Products of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2 and LCNSn(OC(O)CF3)3, and some other oxygen bridged organotin(IV) compounds containing the same ligand, were tested as possible catalysts of some transesterification reactions as well as in direct dimethyl carbonate (DMC) synthesis from CO2 and methanol.  相似文献   

3.
Stable polyfluorinated bis- and tris-(alkoxy)methyl cations were prepared by the reaction of the corresponding difluoroformals (RfO)2CF2 (Rf = -CH2CF3, -CH(CF3)2, -CH2CF2Cl) with an excess of SbF5. Although the cation (CF3CH2O)2CF+ (1a) is stable at ambient temperature, the chlorinated analog (ClCF2CH2O)2CF+ (3a) can be generated only at low temperature in SO2ClF solvent and rapidly decomposes at ambient temperature. Although the salt [(CF3)2CHO]2CF+SbnF5n+1 (2a) is slightly more stable than the salt of cation 3a, at ambient temperature it undergoes rapid disproportionation with formation of equal amounts of [(CF3)2CHO]3C+SbnF5n+1 (2b) and CF3OCH(CF3)2 (2c). Stable solid salt 2b (n = 2) was isolated and fully characterized by 1H, 19F and 13C NMR spectroscopy and its structure was confirmed by single crystal X-ray diffraction.  相似文献   

4.
The reaction of 1,1′-bis(pentafluorophenyl)ferrocene with fluorous alkoxides having the general formula NaOCH2(CF2)nCF3 (n = 0, 2, 5, 7, and 8) afforded a series of ferrocenes of general formula {η5-4-[CF3(CF2)nCH2O]C6F4C5H4}2Fe (1). The reaction of 1,1′-bis(4-tetrafluoropyridyl)ferrocene with the same fluorous alkoxides afforded a series of ferrocenes of general formula (η5-4-{2,6-[CF3(CF2)nCH2O]2C5F2N}C5H4)2Fe (2). Perfluoro(methylcyclohexane)/toluene partition coefficients increase with the number (2 or 4) and length (n) of the fluorous substituent. Complexes 1a and 2a (both n = 0) were structurally characterized.  相似文献   

5.
Electron transfer from state-selected Ar** (ns, nd) Rydberg atoms to neutral (N2O) m and (CF3Cl) m clusters has been studied for principal quantum numbersn between 10 and 45. The dominant product ions are (N2O) q ·O? and, dependent on stagnation pressure, (CF3Cl) q ·Cl? or (CF3Cl) q ·FCl?, respectively. In both cases we observe a strongn-dependence of the negative cluster ion spectra. While for lown, broad ion distributions are observed, much narrower distributions are found for highn, especially for N2O negative cluster ions around the dominant species (N2O)6·O?, corresponding to a remarkably size-selective process. Possible reasons for this behaviour are briefly discussed.  相似文献   

6.
Synthesis of difunctional N,N′-difluoro perfluoroalkylsulfonamides, CF3SO2NFSO2(CF2)nSO2NFSO2CF3, where n=4, 6 is reported. A related compound with an oxygen linkage CF3SO2NFSO2(CF2)2O(CF2)2SO2NFSO2CF3 has also been prepared. These reagents showed good activity for electrophilic fluorination.  相似文献   

7.
Twenty nine bis(fluoroalkyl) phosphates (RFO)2P(O)OR were prepared in 18-75% yield by treating phosphorochloridates (RFO)2P(O)Cl, where RF was HCF2CH2, HCF2CF2CH2, H(CF2)4CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with methanol, ethanol, propanol and isopropanol in diethyl ether in the presence of triethylamine. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with methanol, ethanol and propanol, but not with isopropanol - even on heating in the presence of the catalyst 4-dimethylaminopyridine - due to steric hindrance at phosphorus. The relative reactivities of three of the chloridates decreased in the order [(CF3)2CHO]2P(O)Cl > [(FCH2)2CHO]2P(O)Cl > [(CH3)2CF3CO]2P(O)Cl. Also described is the synthesis of phosphates (CF3CH2O)2P(O)OCH2R, where R = CH2Br, CH2Cl, CH2F and CHF2, and diphosphates [H(CF2)nCH2O]2P(O)OCH2(CF2)2CH2OP(O)[OCH2(CF2)nH]2, where n = 1, 2 and 4.  相似文献   

8.
In Arbuzov-type reactions CFnCl3?nSCl reacts with ROPCl2 (R = CH3, C2H5) to give CFnCl3?nSP(O)Cl2 (n = 3,2,1,0). The corresponding reaction with CF3SeX (X = Cl, Br) produces CF3SeP(O)Cl2 in good yields only in the presence of catalysts such as SbCl5 or BCl3. Reactions between P4 and the sulfenylchlorides produce (CFnCl3?nS)xPCl3?n (n = 3,2,1 and x = 1,2). On heating CFn′ Cl3?n′ SP(O)Cl2 (n′ = 2,1,0) decompose to P(O)Cl3 and SCFn′ Cl2?n′. During this process fluorination of P(O)Cl3 to P(O)F3 by SCF2 is observed. A Cl/Br exchange between CFnCl3?nSP(O)Cl2 (n = 3,2) and PBr3 was proved 19F? and 31P-NMR-spectroscopically.Chemical and physical properties of the newly synthesized compounds will be discussed.  相似文献   

9.
Dimethyl phosphorochloridate reacted with RFCH2NH2 in ether in the presence of Et3N to afford (MeO)2P(O)NHCH2RF, where RF = CF3 and C2F5, in 39 and 47% yield, respectively. Similar reactions with di-n-propyl and diisopropyl phosphorochloridates could be effected only with H2NCH2CF3 when 4-dimethylaminopyridine catalyst was added and (n-PrO)2P(O)NHCH2CF3 and (i-PrO)2P(O)NHCH2CF3 were isolated in 49 and 25% yield, respectively. Treatment of POCl3 with one molar equivalent each of H2NCH2CF3 and Et3N permitted the synthesis of Cl2P(O)NHCH2CF3 in 43% yield. Bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl, where RF = C2F5CH2, C3F7CH2 and (CF3)2CH, reacted with 2,2,2-trifluoroethylamine and 2,2,3,3,3-pentafluoropropylamine to furnish phosphoramidates (RFO)2P(O)NHCH2R, where R = CF3 or C2F5, in yields of 32-67%.  相似文献   

10.
The mixed-ligand complexes of the formula [M(CF3COO)2(MEA) n ] (MEA is monoethanolamine; M = Ca (I) and Sr (II), n = 1.5; M = Ba (III), (n = 1) were obtained from appropriate salts M(CF3COO)2 · nH2O and MEA in ethanol. Complexes I–III were characterized by elemental analysis data and IR spectra. Slow crystallization of a solution of complex III in air gave a single crystal of the formula [Ba(CF3COO)2(MEA)(H2O)], which is a coordination polymer with C.N.(Ba) 9 (X-ray diffraction data). Thermal analysis showed that complexes I–III decompose under argon and in air to the corresponding fluorides at T < 400°C.  相似文献   

11.
A new class of hydrofluoropolyethers, the α,ω-dimethoxyfluoropolyethers (DM-FPEs), characterized by the copolymeric structure CH3O(CF2CF2O)n(CF2O)mCH3 has been recently developed. The synthesis of DM-FPEs here described, has been carried out via a new synthetic route which consists of the reaction of a perfluoropolyether diacyl fluoride with methyl fluoroformate in the presence of a metal fluoride. The reaction products are DM-FPEs and carbon dioxide.Several reaction conditions has been tested varying type of solvent, temperature, type and amount of metal fluoride. The best results were obtained using tetraglyme as solvent and CsF as metal fluoride.  相似文献   

12.
Using acetonitrile or DMF as cosolvent, both perfluoroalkyl iodides such as Cl(CF2)nI (n = 4,6,8, la—lc ), CF3 (CF2)n I (n = 5,6,7, ld—lf ), I (CF2)n O (CF2) SO3 Na(n = 2,4,6, lg—li ) and perfluoroalkyl bromides such as Cl (CF2)n Br (n = 4,6, 3a—3b ) and C7F15 Br (3e) reacted with Rongalite in aqueous solution to give the corresponding sulfinates Cl (CF2)n SO2 Na (n = 4,6,8, 2a—2c ), CF3-(CF2)nSO2Na (n = 5,6,7, 2d—2f ) and NaO2S(CF2)nO(CF2)2SO3Na (n = 2,4,6, 2g—2i ) in moderate yields. 1 H-perfluoroalkanes were formed as the main products when other solvents such as ethanol. iso-propanol, 1,4-dioxane and morpholine were used.  相似文献   

13.
Smog chamber/FTIR techniques were used to measure k(Cl + HCF2OCF2OCF2‐CF2OCF2H) = k(Cl + HCF2O(CF2O)n(CF2CF2O)mCF2H) = (5.0 ± 1.4) × 10?17 cm3 molecule?1 s?1 in 700 Torr of N2/O2 diluent at 296 ± 1 K. The Cl‐initiated atmospheric oxidation of HCF2OCF2OCF2CF2OCF2H and the sample of HCF2O(CF2O)n(CF2CF2O)mCF2H used in this work gave COF2 in molar yields of (476 ± 36)% and (859 ± 63)%, respectively, with no other observable carbon containing products (i.e., essentially complete conversion of both hydrofluoropolyethers into COF2). The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers of the general formula HCF2O(CF2O)n(CF2CF2O)mCF2H. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 819–825, 2008  相似文献   

14.
A series of triblock semifluorinated n-alkanes of general formula F(CF2)n(CH2)m(CF2)nF (n = 6, 8 and m = 4, 6, 8) have been synthesized and characterized. The synthesis of triblock compounds was performed in two different ways according to the length of the hydrogenated moiety. Coupling of two molecules of β-(perfluoro-n-alkyl)ethyl iodides leads to the triblock materials F(CF2)6(CH2)4(CF2)6F and F(CF2)8(CH2)4(CF2)8F. The synthesis of compounds with larger hydrogenated part is accomplished in two steps by the addition of perfluoro-n-alkyl iodide F(CF2)nI to 1,5-hexadiene and 1,7-octadiene, respectively to give the diiodo-adducts which are subsequently deiodinated to the final triblock products F(CF2)6(CH2)6(CF2)6F, F(CF2)6(CH2)8(CF2)6F, F(CF2)8(CH2)6(CF2)8F and F(CF2)8(CH2)8(CF2)8F. The obtained triblock semifluorinated n-alkanes are characterized by low surface free energies with good lubricant properties usable as additives in ski-wax formulations.  相似文献   

15.
Several derivatives of secondary perfluoroalkyl iodides such as CF3CFI(CF2)2O(CF2)3SO2F (3), CF3CFI(CF2),O(CF2)2SO3Na (4), CF3CFI(CF3)n Cl (n=2, 7a; n=4, 7b) and CF3(CF2)2-OCFICF3 (8) were synthesized using known methods, their reaction with sodium dithionite was studied and various olefins were added into the reaction system as radical traps to yield the 1:1 radical adducts.  相似文献   

16.
The well known fluorosulfonyldifluoroacetyl fluoride (I), FOCCF2SO2F (I) quantitatively formed from sulfur trioxide and TFE through the tetrafluoroethanesultone has been converted into the octafluoro- -5-iodo-3-oxapentanesulfonyl fluoride (II) ICF2CF2OCF2CF2SO2F (II) by the well known reaction (1) involving MF, iodine, TFE in aprotic solvents.The iodo compound (II) allowed us to obtain TFE telomers having both fluorosulfonyl and iodo as terminal groups.The said telomers have been easily converted into surfactants (III) through fluorination and vinyl derivatives (IV) by dehalogenation.CF3CF2(CF2CF2)nOCF2CF2SO3M (III)CF2CF(CF2CF2)nOCF2CF2SO2F (IV)  相似文献   

17.
X(CF2CF2)nOCF2CF2SO2F (X=I, Br, Cl; n=1, 2, 3, 4) are widely used fluoroalkylation reagents, which can incorporate ‘heavy’ fluorous tags into organic compounds. X(CF2CF2)nOCF2CF2SO2F have both sulfonyl and halo groups. They behave as bi-functional fluoroalkylation reagents. The cleavage of the C–I bonds of I(CF2CF2)nOCF2CF2SO2F by reductants (such as Na2S2O4, Zn), single electron transfer reagents and radical initiator systems (like Bz2O2, AIBN, and (t-BuO)2, or under UV and heat) gives, respectively, the sulfinatodehalogenated products, the hydrodehalogenated products, the homo-coupling products and the perfluoroalkylated products (if alkenes, alkynes or arenes were added). The functionalization of the sulfonyl groups (SO2F) of X(CF2CF2)nOCF2CF2SO2F by esterification, amidation, and fluorination affords the corresponding perfluoroalkanesulfonates, fluoroalkanesulfonamide, and perfluoroalkanes. In many cases, both the halo and sulfonyl groups of X(CF2CF2)nOCF2CF2SO2F are transformed. These transformations finally lead to hundreds of useful highly fluorinated materials, such as supper acids, catalysts, surfactants, ion-exchange resins, electrolytes, polymers, and dense ionic liquids. Furthermore, X(CF2CF2)nOCF2CF2SO2F have commendable advantages, such as the easy preparation, the wide range of substrate tolerance, the mild reaction condition, and the high yields of desired products, which make them very promising. This review briefly summarizes the synthesis, reactivity, and applications of these intriguing reagents.  相似文献   

18.
The hydrogenation of (CF3)nGeX4-n (X = halogen, n = 1–3) with NaBH4 in an acidic medium has been investigated. Deuteration with NaBD4 and D3PO4 gave the partially deuterated species CF3GeHnD3-n and (CF3)2GeHnD2-n in reasonable isotopic purity. The (CF3)2GeHBr was isolated and converted into the halides (CF3)2GeHX (X = F, Cl, I) by treatment with AgX or HX. Insertion of CF2 into a GeH bond has been observed, and (CF3)(CF2H)GeH2 has been characterized. Direct alkylation of GeH bonds was brought about by reaction with a mixture of RI and R′2Zn (R, R′= CH3, C2H5), and the methyl(trif]uoromethyl)germanes CF3GeH2(CH3), CF3GeH(CH3)2 and (CF3)2GeH(CH3) were isolated. For R = CD3, R′ = CH3 the product distribution can be accounted in terms of two competing mechanisms.  相似文献   

19.
Procedures for preparing polyfluorinated ethers H(CF2CF2) n CH2OR by alkylation of the corresponding telomeric alcohols H(CF2CF2) n CH2OH (n = 1–3) with alkyl halides and alkyl tosylates were examined.  相似文献   

20.
Fluorophilic ethers having the structure RC(CF3)2O(CH2)3CnF2n + 1 are obtained in high yields, when F-tert-butyl alcohol (R = CF3), F-acetone hydrate (R = O(CH2)3CnF2n + 1), F-pinacol (R = C(CF3)2O(CH2)3CnF2n + 1) are reacted with 3-perfluoroalkyl-1-propanols (CnF2n + 1(CH2)3OH, n = 4, 6, 8, 10) in a Mitsunobu reaction (Ph3P/DIAD [i-PrO2CN = NCO2Pr-i]/ether). The parent lipophilic ethers with the structure of (CF3)3CO(CH2)3CnH2n + 1 were prepared analogously using the corresponding fatty alcohols and F-tert-butyl alcohol. To achieve ideal separations, products were transferred to orthogonal phases relative to the other reaction components using fluorous extraction, fluorous solid-organic liquid filtration, or steam-distillation. Selected physical properties including melting and boiling point, together with fluorous partition coefficients of these ethers were determined and the figures obtained were qualitatively analyzed using relevant thermodynamic theories. Some of these ethers are liquids with rather low freezing points and are miscible with fluorocarbon solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号