首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples. The 2 mm single glassy rod sample exhibited a large supercooled liquid region ΔTx = 58 K and γ = Tx/(Tg + Tl) is 0.390, which indicated that the alloy possessed a good glass-forming ability. The bulk samples also exhibited good mechanical properties. The 2 mm rod sample showed the highest yield strength of about 2086 MPa. The 3 mm rod sample not only showed high yield strength of about 2000 MPa, but also enhanced plastic strain of about 0.71%.  相似文献   

2.
LixFePO4 glasses have been prepared by fast-quenching method in the whole range of composition 0 ? x ? 1. The amorphous state of glassy materials is confirmed by X-ray diffraction. Information concerning the local environment of Li and Fe cations and the configuration of (PO4)3− oxo-anions is obtained by Fourier transform infrared (FTIR) spectroscopy. While the LiFePO4 crystalline materials undergo a transition from the paramagnetic to the antiferromagnetic ordering at 52 K, no magnetic ordering is observed in the vitreous samples that realize random field systems, so that a spin glass-like freezing is observed at low temperature. The paramagnetic Curie temperature of LixFePO4 is independent of x and shifted to θ = −60 K in the glassy state, due to a significant distortion of the FeO6 octahedra that alters the superexchange path inside the atomic FeO4 layers of the crystallized structure. On another hand, the PO4 tetrahedra are not significantly distorted in the glassy phase. The results are compared with highly disordered, but nanocrystallized LiFePO4 recently obtained at the early stage of synthesis by solid state reaction at 300 °C. In this latter case, the lack of long-range antiferromagnetic ordering is due to substitutional disorder among the cationic sublattice.  相似文献   

3.
Shengchun Li  B. Li  J.J. Wei 《Journal of Non》2010,356(43):2263-2267
(30 − x/2)Li2O·(70 − x/2)B2O3·xAl2O3(x = 0, 5 and 10) composite gels have been fabricated by the sol-gel method. LiOCH3, B(OC4H9)3, and Al(OC4H9)3 were used as precursor for Li2O, B2O3, and Al2O3, respectively. B(OC4H9)3 and Al(OC4H9)3 were hydrolyzed separately and then mixed. The crystallization behavior and structure of the gels upon thermal treatment temperatures between 150 and 550 °C are characterized on the basis of SEM, XRD and IR analyses. Xerogel with x = 0 exhibits non-crystal features, whereas crystalline phases are found in the xerogels with x = 5 and 10. The crystalline phases are not found with increasing heat treatment temperatures from 150 to 450 °C, but crystalline phases appear present at 550 °C. The xerogel with x = 0, subject to thermal treatment below 450 °C, is found to be still amorphous, and a 550 °C heat treatment leads its structure changing from glassy to crystalline.  相似文献   

4.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

5.
Two amorphous alloys, Ni35Zr65 and Fe40Ni40P14B6, were irradiated using 400 keV protons at several temperatures below the crystallization temperature, Tx, to peak doses in the neighborhood of 3.5 to 4.5 dpa. Irradiation at 250°C resulted in the crystallization of both alloys, which were examined by transmission electron microscopy of samples electrolytically polished to various distances from the irradiated surface to study the effect of dose. Samples masked from the proton beam remained amorphous during irradiation. In the Ni35Zr65 alloy crystallization of the equilibrium phases propagated throughout the entire sample, while the in the Fe40Ni40P14B6 alloy crystallization was observed only in those parts of the samples lying within the proton range. Neither alloy crystallized during irradiation at 100°C. In both these alloys the amorphous phase is therefore evidently stable at irradiation temperatures below approximately 0.6 Tx. An examination of the literature on irradiation damage of binary alloys and intermetallic compounds suggests that there is a tendency for initially amorphous alloys to remain amorphous at irradiation temperatures, Tirr < 0.3 TL, where TL (≈Tx) is the “melting” temperature (either a eutectic, peritectic or congruent melting temperature). Also, these same alloys, even when they are initially crystalline, transform to the amorphous state during irradiation at T < 0.3 TL. Some other crystalline alloys have also been shown to transform to the amorphous state at Tirr < 0.3 TL even though they have never been prepared in this condition by rapid quenching techniques. The temperature 0.3 TL appears to be a lower limit, however, since the crystalline to amorphous transformation occurs in many of these alloys at temperatures greater than 0.3 TL. It is suggested, by analogy with results on void formation in irradiated metals, that this low temperature limit is related to the low mobility of vacancies in these materials, although the mechanism of crystallization, or conversely amorphization, is not fully understood.  相似文献   

6.
The crystallization of amorphous Zr54Cu46 alloy was investigated by using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) techniques. The experimental results show that an endothermic peak in DSC traces for amorphous Zr54Cu46 alloy exists at about 1006 K, indicating following eutectoid reaction occurs, namely, Cu10Zr7+CuZr2↔CuZr in amorphous Zr54Cu46 alloy during heating. With increasing the heating rate, the glass transition temperature Tg and onset crystallization temperature Tx of amorphous Zr54Cu46 alloy increase in parallel, and the supercooled liquid region ΔTx (=TxTg) holds almost constant with an average value of 44 K. Both XRD and TEM results prove that Cu10Zr7 and CuZr2 are main crystallization products for amorphous Zr54Cu46 alloy under continuous heating conditions. No CuZr phase is identified because of its small precipitation amount. Finally, the crystallization processes of amorphous Zr54Cu46 alloy were summarized.  相似文献   

7.
The Zn-EXAFS (extended X-ray absorption fine structure) above its K-absorption edge has been measured for glassy ZnCl2 at low temperature, through Tg (375 K), and into the supercooled and normal liquid state (mp = 593 K) at 673 K. By Fourier filtering and fitting the normalized glass spectra using α-ZnCl2 as a model compound, the Zn2+Cl? distance was determined to be (2.34 ± 0.01) Å and the average coordination number about the Zn2+ was found to be 5.1 ± 0.8. The latter value agrees with the value of 4.7 nearest neighbors obtained by the molecular dynamics computer simulation study of Woodcock et al., for liquid ZnCl2 just above its melting point. The agreement is supportive of the notion that short-range order in the glass is reflective of that of the corresponding liquid from which it was quenched. Spectral measurement as a function of temperature indicates that there is considerable dynamic decoupling of the Zn2+ from its nearest Cl? neighbor even below Tg. This is contrasted with similar data in glassy GeO2 which show that the motion of Ge is strongly coupled with its four oxygen neighbors all the way to Tg. This difference in dynamic disorder substantiates the notion that glassy ZnCl2, as well as vitreous BeF2, provides a further weakened structural analog for glassy GeO2 and SiO2.  相似文献   

8.
Single crystals of Sr14−xCaxCu24O41 (x=0 and 12) are grown by the travelling solvent floating zone technique using an image furnace. The grown crystals are characterized for their single crystallinity by the X-ray and Neutron Laue method. The magnetic susceptibility measurements in Sr14Cu24O41 show considerable anisotropy along the main crystallographic axes. Low-temperature specific heat measurement and DC susceptibility measurement in Ca-doped crystal showed antiferromagnetic ordering at 2.8 K at ambient pressure. High-pressure AC susceptibility measurement on Ca-doped crystal showed a sharp superconducting transition at 2 K under 40 kbars. Tc onset reached a maximum value of 9.9 K at 54 kbars. The bulk superconductivity of the sample is confirmed by the high-pressure AC calorimetry with Tc max=9.4 K and TN=5 K at 56 kbars.  相似文献   

9.
T. Hirata 《Journal of Non》1980,41(2):225-240
The crystallization behaviour of an amorphous Ti50Be40Zr10 alloy during a continuous heating mode from room temperature to 973 K and isothermal annealing at temperatures above the glass transition temperature is examined by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) measurement and large-angle X-ray diffractometry (LAXD). DSC indicated two well-defined exothermic peaks, a slight shoulder at the higher temperature side of the second peak and a small heat evolution at higher temperature. The Kissinger plot for the first and the second peak gives a straight line, from which the apparent activation energy is estimated to be 269 and 413 kJ/mol respectively; the enthalpies for the first and second crystallization process are 1.04 kJ/mol and 4.39 kJ/mol for a heating rate of 20 K/min. The SAXS intensities increase sharply after annealing at about 673 K (corresponding to the first peak in the DSC curves); the scattering is due to the formation of fine-scale crystalline Ti particles by the LAXD. The size of the particles does not change significantly while the number of scattering particles increases, indicating that the reaction is almost nucleation controlled and the growth is very limited. Another crystalline phase would appear in addition to the Ti particles on annealing at temperatures above about 753 K (corresponding to the second peak in the DSC curves), where the SAXS intensities decrease compared with those for only the first-stage of crystallization. The crystalline phase might be a metastable cubic phase with the lattice parameter a0?0.2994 nm.The sequence in the crystallization of the initial non-crystalline material is amorphous → microcrystalline (MS I) → crystalline (MS II; S III), although the structure of crystalline phase in the final stage (S III) was not identified. It is also likely that cold-rolling does not have a perceptible effect on the crystallization behaviour of the present amorphous alloy.  相似文献   

10.
Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation ? = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K ? T > 234 K the activation energy is 0.58 eV and for 234 >T ? 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.  相似文献   

11.
《Journal of Non》2007,353(41-43):3940-3946
Li-disilicate glass-ceramics consist of microcrystallites imbedded in the glassy Li2O · 2SiO2 matrix where the number and size of the crystallites depend on the devitrification heat treatment. To assess ion motion in these model glass-ceramics, we have measured the temperature dependence of the dc conductivity, σdc, and the 7Li nuclear spin relaxation (NSR) rate, 1/T1, in samples with various crystalline fraction, c, ranging from c = 0 (pure glass) to c = 1 (fully devitrified polycrystalline ceramic). The Cole–Cole presentation of the complex impedance shows two separate arcs caused by the remarkable difference of the ionic motion in the glassy and crystalline phase. These two arcs correspond to a bi-exponential decay of the 7Li nuclear spin magnetization where the resulting two NSR rates are induced by the ionic motion in the two phases. Thus the NSR and σdc data provide a comprehensive picture of the ionic motion in the glassy and crystalline phases. In particular, the ionic motion is the fastest in the glass; then at lower values of c we observe a metastable crystalline phase with ionic motion much greater than in the stable (LS2) crystalline phase existing at large c-values.  相似文献   

12.
The specific heat of PTFE (Teflon) has been measured between 0.3 and 20 K at zero pressure, and between 1 and 20 K at five other pressures ranging up to 5.2 kbar. The specific heat anomalies typical of amorphous materials were observed. The linear term is smaller than for other organic polymers and is closer in magnitude to those of high purity glassy insulators. At zero pressure the T3 term in the specific heat exceeds that calculated from the sound velocities by 24%. The evolution with pressure of the T3 term and of the maximum in C/T3 are very similar, suggesting a close relation between the vibrational modes that contribute to these features in the specific heat. This result and the relatively simple structure of Teflon rule out independent localized oscillators as the source of the maximum in C/T3.  相似文献   

13.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

14.
M. Abu El-Oyoun 《Journal of Non》2011,357(7):1729-13419
Differential scanning calorimetry (DSC) technique was used to study the kinetics of amorphous to crystalline transformation in Ge12.5Te87.5 chalcogenide glass. The kinetic parameters of glassy Ge12.5Te87.5 under non-isothermal conditions are analyzed by the model-free and model-fitting approaches from a series of experiments at different constant heating rates (5-50 K/min). The effective activation energy of crystallization was determined by analyzing the data using the isoconversional methods of Kissinger-Akahira-Sunose (KAS), Tang, Starink, Flynn-Wall-Ozawa (FWO) and Vyazovkin. The analysis of the present data shows that the effective activation energy of crystallization is constant throughout the entire interval of conversions and hence with temperature. The transformation mechanism examined using the local Avrami exponents indicates that one mechanism (three-dimensional growth) is responsible for the transformation process for all heating rates used. The reaction model that may describe the transformation process of the Ge12.5Te87.5 chalcogenide glass is the Avrami-Erofeev model (g(α) = [− ln(1 − α)]1/n) with n = 3 for all heating range at the whole range of crystallized fraction (α = 0.05-0.95). A good agreement between the experimental and the reconstructed (α-T) curves has been achieved. The transformation from amorphous to crystalline phase in Ge12.5Te87.5 chalcogenide glass demonstrates a single-step mechanism.  相似文献   

15.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

16.
Bulk glasses of the system Ga20SbxS80−x (x = 5 and 40) were prepared for the first time by the known melt quenching technique. Non-isothermal differential scanning calorimetric (DSC) measurements of as-quenched Ga20SbxS80−x (x = 5 and 40) chalcogenide glasses reveal that the characteristic temperatures e.g. the glass transition temperature (Tg), the temperature corresponding to the maximum crystallization rate (Tp) recorded in the temperature range 400-650 K for x = 5 and 480-660 K for x = 40 are strongly dependent on heating rate and Sb content. Upon heating, these glasses show a single glass transition temperature (Tg) and double crystallization temperatures (Tp1 and Tp2) for x = 5 which overlapped and appear as a single crystallization peak (Tp) for x = 40. The activation energies of crystallization Ec were evaluated by three different methods. The crystallization data were examined in terms of recent analysis developed for non-isothermal conditions. The crystalline phases resulting from (DSC) have been identified using X-ray diffraction.  相似文献   

17.
We have measured the specific heats of amorphous and crystalline specimens of Te0.81Ge0.15As0.04 between 0.2 and 20 K, and of crystalline Te0.93As0.07 between 1 and 20 K. Amorphous Te0.81Ge0.15As0.04 shows a low-temperature linear specific heat anomaly whose magnitude, 0.027 mJ/mol-K2, is similar to that of other amorphous insulators. Crystalline Te0.81Ge0.15As0.04 exists as a two-phase material comprised of GeTe and As-doped Te. The specific heat of this material is analyzed in terms of a weighted average of the properties of its two constituents.  相似文献   

18.
The crystallization temperature, Tx, was determined at constant heating rate, R = T? ? 7 K min?1, by monitoring the electrical resistance. Such experiments were carried out under pressures up to 2.5 GPa, and the resulting dTx/dP was 15.9 K GPa?1 for (Fe65Ni35)75P16B6Al3 and 8.7 K GPa?1, 8.1 K GPa?1 for the two crystallization processes in Ti50Be40Zr10. The activation energies of crystallization under atmospheric pressure were obtained from measurements of Tx at rates from 0.05 K min?1 ?55 K min?1, analysed by plotting ln(Tx2R?1) versus Tx?1.  相似文献   

19.
Pulsed X-band electron paramagnetic resonance (EPR) spectroscopy was applied in studying molecular dynamics in two different solid ethanol matrices. Nitroxyl radicals as paramagnetic reporter groups were embedded in crystalline and glassy ethanol and the phase memory time, Tm, was investigated at 5–80 K. Temperature variation revealed a maximum in 1/Tm centered around 50 K and a small linear decrease with temperature, below ca. 25 K. Faster phase memory time relaxation in crystalline ethanol than in ethanol glass was observed throughout the temperature range studied. This can be attributed to differences in spectral diffusion due to distinct molecular packing densities.  相似文献   

20.
Glasses in the BaO-ZnO-B2O3 system were examined as potential replacement for PbO glass frits with low firing temperature (500-600 °C) for the dielectric layer of a plasma display panel (PDP). The glasses were evaluated for glass transition temperature (Tg), thermal expansion coefficient (α) and dielectric constant ε. The electrical and the thermal properties were also compared with theoretical data calculated by a known empirical equation. Tg of the glasses varied between 480 and 560 °C, and α was in the range of 7-9×10−6 K−1. The dielectric constant ranges from 14 to 19 and the theoretical data showed lower α and ε than the experimental data. The results suggest that BaO-ZnO-B2O3 glasses would be suitable as an alternative to Pb-based dielectric layer in PDPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号