首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Analytical letters》2012,45(17):2754-2772
A simple, rapid, efficient, and environmentally friendly method was developed for the preconcentration of atrazine, simazine, diuron, bentazone, tebuconazole, and fipronil from water. Dispersive liquid–liquid microextraction was employed with determination by liquid chromatography–tandem mass spectrometry. The volumes of extraction and disperser solvents, the concentration of sodium chloride, and the pH were optimized by response surface methodology. The optimum conditions involved the use of 150 µL of 1:1 (v/v) monochlorobenzene:dichlorobenzene as the extraction solvent, 2 mL acetonitrile as the disperser solvent, and 10 mL of sample at pH 3.0. The accuracy was evaluated in terms of recovery values that were from 54 to 112%. The relative standard deviations ranged from 4 to 27%. The limits of quantification were between 0.005 and 0.05 µg L?1. The optimized method had low matrix effects for the analytes and the results demonstrated application for the determination of pesticides in water.  相似文献   

2.
《Analytical letters》2012,45(15):2464-2477
An efficient solid phase extractive preconcentration/separation method was developed for the trace determination of herbicides in aqueous samples using Amberlite XAD-4 resin as the adsorbent. The retained herbicides were eluted with methanol at a flow rate of 1.0 mL min?1 and determined by HPLC-DAD (wavelength of 220 nm) using water (pH:4.7, phosphoric acid) and methanol (ratio 35:65) as the mobile phase with a flow rate of 1.0 mL min?1. Quantitative recoveries of simazine, atrazine and its metabolities were achieved at optimized analysis conditions that included 0.75 g of resin; a pH of 3.0; an eluent volume of 3.0 mL; an eluent flow rate of 1.0 mL min?1; and a sample flow rate of 4.0 mL min?1. The limits of detection, preconcentration factor, and linear ranges for the herbicides were 0.084–0.121 µgL?1, 1000, and 0.5–20 mg L?1, respectively. The performance of the method was evaluated by analysis of spiked water samples. The recoveries of simazine, atrazine and their metabolities were found to be quantitative (99.6–104.8%) with RSDs of 2.2–4.8% and 2.8–4.7% for intra-day and inter-day precision, respectively. The proposed method was successfully applied for trace determination of studied analytes in waste water, apple juice, and red wine samples.  相似文献   

3.
《Microchemical Journal》2011,97(2):348-351
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

4.
Atrazine and simazine are endocrine-disrupting herbicides that may be transported to surface water, unbalancing ecosystems. Sensitive and low-cost methods are required for monitoring the residues of these compounds. Although several highly sensitive chromatographic methods coupled to tandem mass spectrometry are available, these methods use high-cost instrumentation. Ultraviolet detection usually does not provide the sensitivity and selectivity for monitoring these herbicide residues at the maximum concentrations levels permitted by regulatory agencies, so that extraction and concentration steps are required. Cloud-point extraction in Triton X-114 micelles was investigated to extract and preconcentrate atrazine and simazine. Treatment of 10?mL of sample solutions with 5?mL of 5% (m v?1) Triton X-114 in the presence of NaCl (0.3?g) with heating at 60°C for 30?min led to phase separation and the transfer of herbicides to the surfactant-rich phase, which was dissolved in 90:10 methanol:water for liquid chromatography analysis with ultraviolet detection. The linear dynamic range was 1–50?µg?L?1 for the herbicides. The limits of detection were 0.13 and 0.27?µg?L?1 for simazine and atrazine, respectively. The methodology was applied to water samples fortified with 1, 5, 15, and 50?µg?L?1 of the analytes, resulting in recoveries between 86 and 132% with relative standard deviations less than 6%. The method is low cost and uses small volumes of toxic solvents with useful application in trial studies.  相似文献   

5.
The present paper describes the validation of ultrasound-assisted emulsification-microextraction method followed by ion mobility spectrometry (IMS) for determination malathion pesticides. Ultrasound radiation was applied for accelerating the emulsification of microliter organic solvent in aqueous solutions and enhancing the microextraction efficiency. This preconcentration step combined with IMS detection provided a precise and accurate method for determination of trace amounts of malathion pesticides. The effect of parameters influencing the extraction efficiency such as sonication time, type of extraction solvent, extraction solvent volume, and salt concentration were investigated and discussed. Under the optimum conditions, enrichment factors was 270 with corresponding LOD of 4 μg/L. Linearity with a coefficient of estimation (r2) were >0.99 in the concentration level range of 6–750 μg/L for extraction of Malathion in water samples. The applicability of the proposed method was evaluated by determination of the residues of the investigated pesticide in rice paddy water gathered from four stations during 60 days after spraying (June 2014), and in storage rice samples in Mazandaran province, Iran.  相似文献   

6.
A novel analytical technique termed ultrasonic-assisted drop-to-drop solvent microextraction (USA-DDSME) in a capillary tube was developed to determine trace benzene, toluene, xylene in one drop of a water sample, which was combined with gas chromatography–flame ionization detection (GC–FID). The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, the volume of sample, extraction time and effect of salt concentration were optimized. The best optimum parameters for extraction were achieved with 3 μL of extraction solvent. Chloroform was divided into four equal divisions in 20 μL water sample (without salt addition) in a capillary tube and ultrasonicated for 10 min, centrifugated at 2,500 rpm for 5 min to let the extraction solvent settle at the bottom of the capillary tube, then 1 μL of the separated extraction solvent was injected into the GC–FID for analysis. Linearity of the method was determined by analyzing spiked water samples over a concentration range of 0.1–50 μg mL?1. Correspondingly, the LOD values were 0.01 μg mL?1. All calibration curves were found to have good linearity with correlation coefficients (r 2) > 0.995. The precision (RSD) of the system, measured by six repeated determinations of the analytes at 1 μg mL?1 were in the range of 1.6–3.5%.  相似文献   

7.
《Analytical letters》2012,45(1-3):503-513
Coupling a liquid core waveguide cell to a sequential injection chromatograph improved the detection limits for determination of triazine herbicides without compromising peak resolution. Separation of simazine, atrazine, and propazine was achieved in water samples by a 25 mm long C18 monolithic column. Detection was made at 238 nm using a type II LCW (silica capillary coated with Teflon® AF2400) cell with 100 cm of optical path length. Detection limits for simazine, atrazine, and propazine were 2.3, 1.9, and 4.5 µg L?1, respectively. Reduced analysis time and low solvent consumption are other remarkable features of the proposed method.  相似文献   

8.
The preparation of a certified reference material of polar pesticides in freeze-dried water is described. The pesticides selected were atrazine, simazine, carbaryl, propanil, linuron, fenamiphos and permethrin which were added to 6000 litres of tap water at 50–80 μg · L–1 (200–320 μg · L–1 for permethrin) level in presence of NaCl (2.5 g · L–1) prior lyophilization. After the freeze-drying process the residue was rehomogenized, filled into amber glass bottles and stored at –20?°C, +4?°C and +20?°C. All pesticides were determined by HPLC/diode array detector, except permethrin which was determined by GC/ECD. The results obtained for atrazine, simazine, carbaryl, propanil, linuron and fenamiphos showed no within- or between-bottle inhomogeneity, however the material was non-homogeneous for permethrin and therefore this was withdrawn from further studies. With respect to the stability for over one year, all pesticides were stable at –20?°C. At +4?°C all pesticides were stable for at least 9 months and at +20?°C the stability was demonstrated only during the first month of storage. The content (mass fractions) of atrazine, simazine, carbaryl, propanil and linuron in freeze-dried water (CRM 606) was certified by an interlaboratory testing and a certification campaign.  相似文献   

9.
A fast and effective preconcentration method for extraction of organochlorine pesticides (OCPs) was developed using a homogeneous liquid–liquid extraction based on phase separation phenomenon in a ternary solvent (water/methanol/chloroform) system. The phase separation phenomenon occurred by salt addition. After centrifugation, the extraction solvent was sedimented in the bottom of the conical test tube. The OCPs were transferred into the sedimented phase during the phase separation step. The extracted OCPs were determined using gas chromatography–electron capture detector. Several factors influencing the extraction efficiency were investigated and optimized. Optimal results were obtained at the following conditions: volume of the consolute solvent (methanol), 1.0 mL; volume of the extraction solvent (chloroform), 55 μL; volume of the sample, 5 mL; and concentration of NaCl, 5 % (w/v). Under optimal conditions, the preconcentration factors in the range of 486–1,090, the dynamic linear range of 0.01–100 μg L?1, and the limits of detection of 0.001–0.03 μg L?1 were obtained for the OCPs. Using internal standard, the relative standard deviations for 1 μg L?1 of the OCPs in the water samples were obtained in the range of 4.9–8.6 % (n = 5). Finally, the proposed method was successfully applied for extraction and determination of the OCPs in water and fruit samples.  相似文献   

10.
《Analytical letters》2012,45(3):439-451
This paper describes the treatment of montmorillonite (MT), with K+ (MTK), Na+ (MTNa), and Ca2+ (MTCa) to explore the use of these minerals for the extraction and preconcentration of the herbicides atrazine, simazine, and ametryne from aqueous medium. In the sorption process, the three materials exhibited good performance; ametryne was totally sorbed. For atrazine and simazine, MTK showed a removal between 90% (atrazine) and higher than 99% (simazine). The recoveries employing solutions at initial concentrations of 100 µg L?1 of each herbicide showed results of 90% (simazine) and 94% (atrazine), whereas for 10 µg L?1, the results of 73% (simazine) and 81% (atrazine) were obtained. On the other hand, ametryne showed poor recovery values (25 to 40%), probably due to a stronger interaction with MTK, lowering the recovery values. Based on the results for atrazine and simazine, MTK presented good features to be used as sorbent phase and for preconcentration, being easily prepared with low cost, demanding low amounts to be used for this purpose, providing fast sorption of atrazine and simazine, and with appropriate recoveries.  相似文献   

11.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

12.
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL− 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL− 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

13.
A fiber optic aided spectrophotometric technique has been developed for determination of ruthenium in nitric acid medium. The developed method is simple, accurate and applicable to aqueous streams of nuclear reprocessing. The system obeys Lambert–Beer’s law at 468 nm in the concentration range of 30–360 μg/mL of ruthenium. The molar absorption coefficient, detection limit and Sandell’s sensitivity are 68.477 L Mol?1 cm?1, 31 μg/mL and 0.0124 μg/cm2 respectively. Relative standard deviation was less than 2 % and correlation coefficient was 0.9998. The results obtained by the developed procedure are in good agreement with those obtained by the standard ICP-OES method. Fission products like zirconium and strontium are not interfering. Uranium is interfering and needs prior separation by solvent extraction method. The developed method is adaptable for remote operation and on-line monitoring.  相似文献   

14.
《Analytical letters》2012,45(5):886-891
The determination of bromate BrO3 ? in 50 different bottled drinking water samples collected from Saudi Arabian markets has been investigated using liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). For analysis, samples were injected directly without any further pretreatment or dilution, using only a 50 μL injection volume. The method showed: detection limit of 0.5 μg/L, limit of quantification of 1.0 μg/L, 1.0 ? 200.0 μg/L linearity range (r2 = 0.9998), relative standard deviation (%RSD) for reproducibility (inter-day precision) values of 14% and 4% for low and high concentration levels (10,100 μg/L), respectively. The results obtained for bromate showed that 30% of the samples are acceptable as US EPA standards (10 μg/L), 40% of the samples are acceptable as Gulf (Saudi Arabia) standards (25 μg/L), and almost 60% of the samples exceed the allowable limits for bromate in bottled drinking water.  相似文献   

15.
Trace levels of the veterinary antibiotic compound sulfadiazine (SDZ) can be determined in agricultural drainage water samples with this new method. Optimized sample pretreatment and solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry (SPE LC-MS/MS) using positive electrospray ionization. The linear dynamic range for the LC-MS/MS was assessed from 5 μg/L to 25 mg/L with a 15-point calibration curve displaying a coefficient of correlation r 2?=?0.9915. Agricultural drainage water spiked at a concentration of 25 ng/L gave recoveries between 63 and 98 % (relative standard deviation 15 %), while at 10 ng/L, it showed a lower recovery of 32 % (relative standard deviation 47 %). The final SPE LC-MS/MS method had a limit of detection (LOD)Method and a limit of quantification (LOQ)Method of 7.5 and 23 ng/L agricultural drainage water, respectively. Determination of SDZ, spiked at a realistic concentration of 50 μg/L, in artificial drainage water (ADW) containing common and high levels of phosphate (0.05, 0.5, and 5 mg/L) gave recoveries between 70 and 92 % (relative standard deviation 7.4–12.9 %). Analysis of the same realistic concentration of SDZ in ADW, spiked with common and high levels of dissolved organic carbon (2, 6, and 15 mg/L) confirmed the possible adaptation of a tandem solid-phase extraction (strong anion exchange (SAX)-hydrophilic-lipophilic balance (HLB)) followed by liquid chromatography-tandem mass spectrometry methodology. Recoveries obtained ranged from 104 to 109 % (relative standard deviation 2.8–5.2 %). The new methods enable determination of the veterinary antibiotic compound SDZ in agricultural drainage water from field experiments and monitoring schemes for phosphate- and dissolved organic carbon (DOC)-rich water samples in intensive farming areas.
Figure
Clean-up and up-concentration of sulfadiazine from agricultural drainage water  相似文献   

16.
A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.  相似文献   

17.
Chloro-s-triazines are a class of compounds comprising atrazine, simazine, propazine, cyanazine and their chlorinated metabolites. The US Environmental Protection Agency (EPA) has determined that selected chloro-s-triazines--atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine, and didealkylatrazine--have a common mode of toxicity related to endocrine disruption. In this paper, a dual-resin solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) method is reported that provides for each of these chloro-s-triazines including the polar metabolite, didealkylatrazine. The method utilizes deuterated internal standards for quantitation and terbuthylazine as a recovery standard. The limit-of-detection was 0.01 microg/L for simazine, deethylatrazine, deisopropylatrazine and didealkylatrazine, and 0.02 microg/L for atrazine and propazine in surface water. Mean recoveries for 0.5 and 3.0 microg/L spikes for atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine and didealkylatrazine were 94, 104, 103, 110, 108 and 102%, respectively, in surface water. The method was also validated by matrix spikes into fourteen different raw and treated natural surface waters. This method is useful for monitoring "total chloro-s-triazines" in both raw and treated drinking waters.  相似文献   

18.
Erdan Hu  Hefa Cheng 《Mikrochimica acta》2013,180(7-8):703-710
We have evaluated three methods for the extraction of atrazine and six of its degradation products from microporous mineral sorbents. Soxhlet extraction and ultrasonic extraction, which work well on soils and sediments, recover only <15 % of the atrazine from a dealuminated Y zeolite. Closed-vessel microwave-assisted extraction, in contrast, gives much better recoveries. This is attributed to the accelerated mass transfer at elevated temperatures and the displacement by the solvent forced into the mineral micropores under elevated pressures. Under the optimized conditions, the recovery of atrazine from the hydrophilic Y zeolites (Si/Al ratios <8) is almost quantitative, and ~77 % for the more hydrophobic ones. The extraction efficiencies for the degradation products of atrazine in the hydrophilic zeolites (74.1–100 %) are also higher than those in the hydrophobic ones (22.3–44.2 %). The extracted compounds were quantified by a combination of ultra-HPLC and tandem MS and resulted in detection limits between 0.04 and 1.41 mg kg?1 on a hydrophilic Y zeolite (Si/Al?=?2.55), and of 0.09–2.35 mg kg?1 on a hydrophobic zeolite (Si/Al?=?15). The method was applied to study the degradation of atrazine sorbed on dealuminated Y zeolites.   相似文献   

19.
This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL?1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg?1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of?≤?20%, respectively, when spiked at a level of 10 μg kg?1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg?1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg?1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg?1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.  相似文献   

20.
This work describes the optimization, validation and application of an ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and confirmation of 11 compounds (atrazine, simazine, terbuthylazine, terbumeton, terbutryn and their main transformation products) in surface and wastewater samples. Several of these analytes are included in the list of priority substances in the framework on European Water Policy. The application of this method to water samples reveals that the most relevant transformation products (TPs) should be incorporated into current analytical methods to obtain a more realistic knowledge of water quality regarding pesticide contamination. TPs are generally more polar and mobile than parents and can be transported to the aquatic environment more easily than their precursors. This can explain their concentrations found in water, which in many cases are much higher than intact triazines. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyser was used. Working in selected reaction monitoring mode, up to three simultaneous transitions per compound were acquired, allowing a reliable quantification and confirmation at nanogram per litre levels. The method developed includes a pre-concentration step based on solid-phase extraction (OASIS HLB cartridges). Satisfactory recoveries (70–120%) and relative standard deviations (<20%) were obtained for all compounds in different water sample types spiked at two concentrations (0.025 and 0.1 μg/L in surface water; 0.25 and 1.0 μg/L in effluent wastewater; 0.5 and 2.0 μg/L in influent wastewater). The optimized method was found to have excellent sensitivity with instrumental detection limits as low as 0.03 pg. In addition, the influence of the matrix constituents on the ionization efficiency and the extraction recovery was studied in different types of Italian and Spanish surface and urban wastewater. Signal suppressions were observed for all compounds, especially for influent wastewater. The use of isotope-labelled internal standards was found to be the best approach to assure an accurate quantification in all matrix samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号