首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Ion mobility-mass spectrometry is starting to be considered as a useful tool in the deconvolution of complex oil and petroleum samples. While ultrahigh resolution mass spectrometry is the incumbent technology in this field, ion mobility offers complementary information related to species size and shape, and also the ability to resolve structural isomers. In this work, a sample of the resins portion of the Saturates, Aromatics, Resins, and Asphaltenes (SARA) fractions of crude oil was analysed using an orthogonal acceleration quadrupole time-of-flight mass spectrometer (oa-QToF MS) that incorporates a travelling wave ion mobility spectrometry (TWIMS) region. The ion mobility data were compared with previously acquired ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) data and various nitrogen containing families were identified. Ion mobility data were processed in the typical way for the oil and petroleum industry; and the use of high resolution exact mass coupled with mobility data to provide enhanced species resolution was examined. Double bond equivalence (DBE) and carbon number groups were identified using patterns in the ion mobility data, which demonstrated the utility of ion mobility for discovering species relationships within the crude oil sample. The ability to calibrate the ion mobility cell and generate sizes for the detected ions was also recognised as potentially having particular value for the implementation of conversion or hydrotreatment processes in the oil industry.  相似文献   

3.
Trapped ion mobility spectrometry (TIMS) is a versatile high resolution technique that provides the user with the flexibility to adjust the mobility range of interest, duty cycle (up to 100 %), and resolving power (up to ~300) according to the application requirements. Furthermore, TIMS offers the flexibility of operating as either a mobility-selective or conventional ion funnel, thus permitting ion mobility separations to be turned on or off. Here, we extend the flexibility of TIMS by introducing multilinear and nonlinear scanning methods that allow enhanced resolution in user-defined mobility regions. The performance of the new method is demonstrated using a variety of nonlinear scan functions that allow the resolving power to be continuously varied across the mobility spectrum. Further, we demonstrate that mobility analysis can be targeted over disparate regions using a multilinear scan function. In this example, high resolution mobility analysis is targeted on two analytes on opposite ends of a mobility range, while other ions that fall between the regions of interest remain unanalyzed. Using this approach, the resolving power for targeted species was increased by a factor of two over the conventional linear scanning approach (R ~60 versus ~120) without reducing the duty cycle of the TIMS measurement. Importantly, in such an analysis, ions in the untargeted regions are not mobility analyzed, however, they are also not discarded. Rather, these ions are ejected for downstream mass analysis. In this sense, TIMS bridges the gap between dispersive and scanning mobility techniques. That is, TIMS disperses ions according to their elution voltage, however, TIMS can also perform target mobility analyses without eliminating untargeted ions.  相似文献   

4.
A simple device is described for desolvation of highly charged matrix/analyte clusters produced by laser ablation leading to multiply charged ions that are analyzed by ion mobility spectrometry-mass spectrometry. Thus, for example, highly charged ions of ubiquitin and lysozyme are cleanly separated in the gas phase according to size and mass (shape and molecular weight) as well as charge using Tri-Wave ion mobility technology coupled to mass spectrometry. This contribution confirms the mechanistic argument that desolvation is necessary to produce multiply charged matrix-assisted laser desorption/ionization (MALDI) ions and points to how these ions can be routinely formed on any atmospheric pressure mass spectrometer.  相似文献   

5.
A program for Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry, also known as field asymmetric ion mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS), has been developed. Simulations are based on elastic collisions between the ions and the gas particles, and take into account the effects of flow dynamics and asymmetric electric fields. Using this program, the separation and diffusion of the ions moving in a planar DMS filtration gap are demonstrated. Ion focusing in a cylindrical filtration gap is also confirmed. A characteristic compensation voltage is found to provide insight for understanding separation in non-linear ion mobility spectrometry. The simulation program is used to study the characteristics of non-linear ion mobility spectrometry, the effect of the carrier gas flow, and the dependence of the compensation voltage and nonlinear mobility coefficient (α) on the applied asymmetric electric field.  相似文献   

6.
Ion mobility-mass spectrometry   总被引:3,自引:0,他引:3  
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.  相似文献   

7.
Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) was utilized to evaluate an ion collision energy ramping technique that simultaneously fragments a variety of species. To evaluate this technique, the fragmentation patterns of a mixture of ions ranging in mass, charge state, and drift time were analyzed to determine their optimal fragmentation conditions. The precursor ions were pulsed into the IMS-MS instrument and separated in the IMS drift cell based on mobility differences. Two differentially pumped short quadrupoles were used to focus the ions exiting the drift cell, and fragmentation was induced by collision induced dissociation (CID) between the conductance limiting orifice behind the second short quadrupole and before the first octopole in the mass spectrometer. To explore the fragmentation spectrum of each precursor ion, the bias voltages for the short quadrupoles and conductance limiting orifices were increased from 0 to 50 V above nonfragmentation voltage settings. An approximately linear correlation was observed between the optimal fragmentation voltage for each ion and its specific drift time, so a linear voltage gradient was employed to supply less collision energy to high mobility ions (e.g., small conformations or higher charge state ions) and more to low mobility ions. Fragmentation efficiencies were found to be similar for different ions when the fragmentation voltage was linearly ramped with drift time, but varied drastically when only a single voltage was used.  相似文献   

8.
Ion mobility spectrometry (IMS) separates ions while they travel through a buffer gas under the influence of an electrical field. The separation is affected by mass and charge but most particularly by shape (collision cross section). When coupled to MS, IMS-MS offers therefore a powerful tool for structural elucidation and isomer separation. Systematic studies aimed to compare and quantitate the effects of structural changes on drift time such as length and ramification of carbon chain, unsaturation, geometrical isomerism (cis/trans isomers for instance), cyclization and ring size are, however, scarce. Herein we used traveling wave ion mobility mass spectrometry (TWIM-MS) to systematically evaluate the relationship between structure and drift time. For that, a series of deprotonated carboxylic acids were used as model ions with a carboxylate “charge tag” for gas phase MS manipulation. Carboxylic acids showed a near linear correlation between the increase of carbon number and the increase of collision cross section (CCS). The number of double bonds changes slightly the CCS of unsaturated acids. No differences in drift time and no significant differences in CCS of cis- and trans-double bond of oleic and elaidic acids were observed. Cyclization considerably reduces the CCS. In cyclic carboxylic acids, the increase of double bonds and aromatization significantly reduces the CCS and the drift times. The use of a more polarizable drift gas, CO2, improved in some cases the separation, as for biomarker isomers of steranoic acids. The β-isomer (cis-decaline) has smaller CCS and therefore displayed lower drift time compared to the α-isomer (trans-decaline). Structural changes revealed by calculations were correlated with trends in drift times.  相似文献   

9.
Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.  相似文献   

10.
Recent developments in the field of ion mobility spectrometry provide new possibilities to explore and understand gas-phase ion chemistry. In this study, hyphenated trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was applied to investigate analyte ion mobility as function of adduct ion formation for twelve pharmaceutically relevant molecules, and for tetrahydrocannabinol (THC) and its isomer cannabidiol (CBD). Samples were introduced by direct infusion and ions were generated with positive electrospray ionization (ESI+) observing protonated and sodiated ions. Measurements were performed with and without addition of cesium-, lithium-, silver- and sodium ions to the samples. For the tested compounds, metal adduct ions with the same m/z but with different mobility and collision cross section (CCSs) were observed, indicating different molecular conformations. Formation of analyte dimers was also observed, which could be associated with molecular geometry of the compounds. By optimizing the range and speed of the electric field gradient and ramp, respectively, the separation of THC and CBD was achieved by employing the adduct formation. This study demonstrates that the favorable resolution of TIMS combined with the ability to detect weakly bound counter ions is a valuable means for rapid detection, separation and structural assignment of molecular isomers and analyte conformations.  相似文献   

11.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

12.
In the present work we describe the principles of operation, versatility and applicability of a trapped ion mobility spectrometer (TIMS) analyzer for fast, gas-phase separation of molecular ions based on their size-to-charge ratio. Mobility-based separation using a TIMS device is shown for a series for isobar pairs. In a TIMS device, mobility resolution depends on the bath gas velocity and analysis scan speed, with the particularity that the mobility separation can be easily tuned from low to high resolution (R?>?50) in accordance with the analytical challenge . In contrast to traditional drift tube IMS analyzer, a TIMS device can be easily integrated in a mass spectrometer without a noticeable loss in ion transmission or sensitivity, thus providing a powerful separation platform prior to mass analysis.  相似文献   

13.
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.  相似文献   

14.
Collision induced dissociation (CID) combined with matrix assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) is described. In this approach, peptide ions are separated on the basis of mobility in a 15 cm drift cell. Following mobility separation, the ions exit the drift cell and enter a 5 cm vacuum interface with a high field region (up to 1000 V/cm) to undergo collisional activation. Ion transmission and ion kinetic energies in the interface are theoretically evaluated accounting for the pressure gradient, interface dimensions, and electric fields. Using this CID technique, we have successfully fragmented and sequenced a number of model peptide ions as well as peptide ions obtained by a tryptic digest. This instrument configuration allows for the simultaneous determination of peptide mass, peptide-ion sequence, and collision-cross section of MALDI-generated ions, providing information critical to the identification of unknown components in complex proteomic samples.  相似文献   

15.
The effect of hydroxyl radical induced oxidation on the collision cross-sections of hen egg lysozyme and bovine ubiquitin was investigated by travelling wave ion mobility mass spectrometry for the first time. The oxidized ions of lysozyme and ubiquitin share common collision cross-sections with their unoxidized counterparts suggesting that they share common structures that were unaffected by limited oxidation. In the case of bovine ubiquitin, two distinct conformers were detected for the protein in its unoxidized and oxidized states though no change in the levels of each was observed upon oxidation. This supports the validity of Radical Probe Mass Spectrometry (RP-MS) using an electrical discharge source for protein footprinting experiments. Travelling wave ion mobility mass spectrometry has been used for the first time to confirm that limited oxidation does not have an impact on the global structure of proteins.  相似文献   

16.
Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS–MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS–MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.  相似文献   

17.
Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths λ?=?213 and 266 nm and pulse energies between 50 and 300 μJ. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1–50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion–molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.  相似文献   

18.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

19.
Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric – indistinguishable by mass spectrometry – and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS – time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.  相似文献   

20.
Ion mobility spectrometry (IMS) in combination with different techniques of atmospheric pressure ionization (63Ni ionization, photoionization, Corona discharge ionization) was applied to determine the influence of structural features of aromatic and cyclic hydrocarbons on ion mobility spectra. For this purpose, different sets of isomeric hydrocarbons were investigated using the above-mentioned ionization techniques. We found different structural features of these isomeric non-polar compounds which cause distinct differences in ion mobility spectra. These differences result from the formation of different product ions or a different relative abundance of ions formed depending on the occurrence of certain structural features (position of the double bond, arrangement of double bonds within the carbon ring, configuration of aliphatic side chain in the space, position of aliphatic side chain on the carbon ring and the number of carbon atoms in the aliphatic side chain). The nature of product ions formed was determined using a coupling of IMS with mass spectrometry (MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号