首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended Projection Methods for Monotone Variational Inequalities   总被引:1,自引:0,他引:1  
In this paper, we prove that each monotone variational inequality is equivalent to a two-mapping variational inequality problem. On the basis of this fact, a new class of iterative methods for the solution of nonlinear monotone variational inequality problems is presented. The global convergence of the proposed methods is established under the monotonicity assumption. The conditions concerning the implementability of the algorithms are also discussed. The proposed methods have a close relationship to the Douglas–Rachford operator splitting method for monotone variational inequalities.  相似文献   

2.
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear quadratic control problem where the performance functional is the integral of a quadratic differential form. We look for characterizations of the set of stationary trajectories and of the set of local minimal trajectories with respect to compact support variations, turning out that they are equal if the system is dissipative. Finally we provide conditions for regular implementability of this set of trajectories and give an explicit representation of an optimal controller.  相似文献   

3.
We consider a two-sided matching model where agents' preferences are a function of the types of their potential mates. Matching rules are manipulated by type misrepresentation. We explore the implementability of the -core in -Strong Nash Equilibria. Although direct type pretension mechanisms rule out “bad” equilibria, the existence of equilibrium cannot be generally guaranteed. However, taking as the discrete partition, the individually rational matching correspondence is partially implementable in Nash equilibria. On the other hand, incorporating a certain degree of hypocrisy in the mechanism, i.e., allowing agents to pretend different types to different potential mates, ensures the full implementability of the -core in -Strong Nash Equilibria.  相似文献   

4.
In this paper, the dissipative quantized control problem is addressed for Markov jump two-dimensional systems based on Roesser model, in which both asynchronous phenomenon and signal quantization between system modes and controller modes are taken into consideration simultaneously. Moreover, the hidden Markov model (HMM) is adopted to tackle such an asynchronous phenomenon. The principal goal is to devise a state feedback controller, which guarantees that the established closed-loop system achieves asymptotic mean square stability as well as satisfies a prescribed extended dissipative property. Drawing support from Lyapunov function approach and inequality technique, some less conservative criteria ensuring the implementability of the desired controller are derived. Ultimately, the availability and practicability of the developed results are certified through a simulation example.  相似文献   

5.
The problem of optimal control of a group of coupled dynamical objects is considered. The cases are examined in which the centralized control of a group of objects is impossible. Fast real-time optimal control algorithms of each of the dynamical systems are described that use information exchanged between group members in the course of control. The proposed methods supplement the earlier developed real-time optimal control methods for an individual dynamical system. The results are illustrated using optimal control of two coupled mathematical pendulums as an example.  相似文献   

6.
卫星姿态跟踪的间接自适应模糊预测控制   总被引:1,自引:0,他引:1  
孙光  霍伟 《系统科学与数学》2009,29(10):1327-1342
对含模型不确定性和未知干扰的卫星姿态系统提出了具有间接自适应模糊补偿的广义预测跟踪控制方法. 首先基于卫星姿态动力学模型设计了非线性广义预测控制律, 再利用自适应模糊系统逼近预测控制律中的模型不确定项, 使得所得到的预测控制算法可实施.证明了当卫星姿态模型中不确定项满足一定条件时, 所设计的控制律可使卫星姿态跟踪误差收敛到原点的小邻域内,并仿真结果验证了所提出方法的有效性.  相似文献   

7.
This paper is devoted to investigate a class of complex chaotic systems and a linear correlation between the real and imaginary component of complex variables in these systems is found. Based on this linear relationship, a simplified law is proposed. First, complex Lorenz system is given to show the linear correlation, then it is simplified. Second, a simplified law is proposed to determine whether the complex system can be simplified, and the complex Lü system and hyperchaotic complex Lü system are used to verify the simplified law. Finally, a new synchronization control is proposed to synchronize complex Lorenz system and real Lorenz system. The theoretical analysis and numerical simulation prove the feasibility and better performance of this method.  相似文献   

8.
Nonlinear Programming Methods for Real-Time Control of an Industrial Robot   总被引:1,自引:0,他引:1  
The optimal control of an industrial robot is considered as a parametricnonlinear control problem subject to control and state constraints. Based onrecent stability results for parametric control problems, a robust nonlinearprogramming method is proposed to compute the sensitivity of open-loopcontrol solutions. Real-time control approximations of the perturbedoptimal solutions are obtained by evaluating first-order Taylor expansionsof the optimal solutions with respect to the parameter. The proposednumerical methods are applied to the industrial robot Manutec r3. Thequality of the real-time approximations is illustrated for perturbations inthe transport load.  相似文献   

9.
The tracking control problem is studied for a class of uncertain non-affine systems. Based on the principle of sliding mode control (SMC), using the neural networks (NNs) and the property of the basis function, a novel adaptive design scheme is proposed. A novel Lyapunov function, which depends on both system states and control input variable, is used for the development of the control law and the adaptive law. The approach overcomes the drawback in the literature. In addition, the lumped disturbances are taken in account. By theoretical analysis, it is proved that tracking errors asymptotically converge to zero. Finally, simulation results demonstrate the effectiveness of the proposed approach.  相似文献   

10.
研究一类具有非线性不确定参数的非线性系统的自适应模型参考跟踪问题.假设系统的非线性项关于不确定参数是凸或凹的.去掉了在先前有关研究中要求参考模型矩阵有小于零的实特征值的条件.既考虑了状态反馈控制方式,也考虑了输出反馈控制方式.在采用输出反馈控制时,假设非线性项满足李普希兹条件,但李普希兹常数未知.基于一种极大极小方法,提出了一种自适应控制器的设计方法.控制器是连续的,能保证闭环系统的所有变量有界,并且渐近精确跟踪参考模型.举例说明了本结论的有用性.  相似文献   

11.
针对一类线性离散系统,提出一种基于二维模型的非脆弱离散重复控制设计方法.通过独立地考虑重复控制系统的控制与学习行为,建立离散重复控制系统的二维模型. 在此基础上,针对重复控制器和反馈控制器具有不确定性的离散重复控制系统,给出了基于线性矩阵不等式的系统稳定性条件和重复控制律. 最后,数值仿真实例验证了所提方法的有效性.  相似文献   

12.
An approach to the numerical solution of optimization problems with equality constraints violating the traditional constraint qualification is developed. According to this approach, an (overdetermined) defining system is constructed based on the Fritz John optimality conditions and the Gauss-Newton method is applied to this system. The assumptions required for the implementability and local superlinear convergence of the resulting algorithm are completely characterized in terms of the original problem.  相似文献   

13.
针对大气层内拦截导弹直接侧向力与气动力复合控制系统设计问题, 首先, 根据发动机的配置建立了复合控制系统模型;其次, 提出了复合控制策略, 包括动态分配算法、直接力控制子系统、气动力控制子系统3部分; 然后, 在考虑两套执行机构动态特性差别的情况下,基于预测控制思想给出了过载误差动态分配算法; 在此基础上, 根据直接侧向力的离散特性, 基于预测控制方法设计了直接力控制规律, 考虑到直接力控制作用对弹体产生的扰动, 基于自抗扰方法设计了气动力子系统; 最后, 通过仿真验证了直接力气动力复合控制策略与方法的有效性.  相似文献   

14.
A kind of real-time stable self-learning fuzzy neural network (FNN) control system is proposed in this paper. The control system is composed of two parts: (1) A FNN controller which use genetic algorithm (GA) to search optimal fuzzy rules and membership functions for the unknown controlled plant; (2) A supervisor which can guarantee the stability of the control system during the real-time learning stage, since the GA has some random property which may cause control system unstable. The approach proposed in this paper combine a priori knowledge of designer and the learning ability of FNN to achieve optimal fuzzy control for an unknown plant in real-time. The efficiency of the approach is verified by computer simulation.  相似文献   

15.
An observer-based adaptive controller developed from a hierarchical fuzzy-neural network (HFNN) is employed to solve the controller time-delay problem for a class of multi-input multi-output (MIMO) non-affine nonlinear systems under the constraint that only system outputs are available for measurement. By using the implicit function theorem and Taylor series expansion, the observer-based control law and the weight update law of the HFNN adaptive controller are derived. According to the design of the HFNN hierarchical fuzzy-neural network, the observer-based adaptive controller can alleviate the online computation burden. Moreover, the common adaptive controller is utilized to control all the MIMO subsystems. Hence, the number of adjusted parameters of the HFNN can be further reduced. In this paper, we prove that the proposed observer-based adaptive controller can guarantee that all signals involved are bounded and that the outputs of the closed-loop system track asymptotically the desired output trajectories.  相似文献   

16.
In this paper, a new systematic design procedure to stabilize continuous unified chaotic systems based on discrete sliding mode control (DSMC) is presented. In contrast to the previous works, the concept of rippling control is newly introduced such that the design of DSMC can be simplified and only a single controller is needed to realize chaos suppression. As expected, under the proposed DSMC law, the unified system can be stabilized in a manner of ripple effect, even when the external uncertainty is present. Last, two examples are included to illustrate the effectiveness of the proposed rippling DSMC developed in this paper.  相似文献   

17.
This paper deals with the problem of adaptive fuzzy tracking control for a class of switched uncertain nonlinear systems. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and the adaptive backstepping and dynamic surface control techniques are adopted. First, a new state-dependent switching method is proposed. By introducing convex combination technique and designing a state-dependent switching law, only the solvability of the adaptive tracking control problem for a convex combination of the subsystems is necessary. Second, a new common Lyapunov function with switched adaptive parameters is constructed to reduce the conservatism. Third, to avoid Zeno behavior, a modified state-dependent switching law with dwell time is proposed. It is shown that under the proposed control and switching laws, all the signals of the closed-loop system are bounded and all the state tracking errors can converge to a priori accuracy, even if some subsystems are uncontrollable. Finally, the effectiveness of the proposed method is illustrated through two simulation examples.  相似文献   

18.
This article investigates the sliding mode control method for a class of chaotic systems with matched and unmatched uncertain parameters. The proposed reaching law is established to guarantee the existence of the sliding mode around the sliding surface in a finite‐time. Based on the Lyapunov stability theory, the conditions on the state error bound are expressed in the form of linear matrix inequalities. Simulation results for the well‐known Genesio's chaotic system are provided to illustrate the effectiveness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 14–19, 2016  相似文献   

19.
In this paper, we consider a general nonlinear optimal control problem involving multiple criteria. We show that the problem can be transformed into a standard optimal control problem, and hence, is solvable by conventional techniques. However, the optimal control so obtained is of open loop nature and is rather sensitive to perturbations. Based on the first-order approximation, neighboring extremal approach is used to obtain a local linear feedback correction control law, leading to a combined controller. Two numerical examples are solved using the proposed method to demonstrate the effectiveness of the combined control.  相似文献   

20.
In this paper, a discrete integral sliding mode (ISM) controller based on composite nonlinear feedback (CNF) method is proposed. The aim of the controller is to improve the transient performance of uncertain systems. The CNF based discrete ISM controller consists of a linear and a nonlinear term. The linear control law is used to decrease the damping ratio of the closed-loop system for yielding a quick transient response. The nonlinear feedback control law is used to increase the damping ratio with an aim to reduce the overshoot of the closed-loop system as it approaches the desired reference position. It is observed that the discrete CNF-ISM controller produces superior transient performance as compared to the discrete ISM controller. The closed-loop control system remains stable during the sliding condition. Simulation results demonstrate the effectiveness of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号